The search functionality is under construction.

Keyword Search Result

[Keyword] unary operation(2hit)

1-2hit
  • Design of Highly Parallel Linear Digital System for ULSI Processors

    Masami NAKAJIMA  Michitaka KAMEYAMA  

     
    PAPER-Multiple-Valued Architectures and Systems

      Vol:
    E76-C No:7
      Page(s):
    1119-1125

    To realize next-generation high performance ULSI processors, it is a very important issue to reduce the critical delay path which is determined by a cascade chain of basic gates. To design highly parallel digital operation circuits such as an adder and a multiplier, it is difficult to find the optimal code assignment in the non-linear digital system. On the other hand, the use of the linear concept in the digital system seems to be very attractive because analytical methods can be utilized. To meet the requirement, we propose a new design method of highly parallel linear digital circuits for unary operations using the concept of a cycle and a tree. In the linear digital circuit design, the analytical method can be developed using a representation matrix, so that the search procedure for optimal locally computable circuits becomes very simple. The evaluations demonstrate the usefulness of the circuit design algorithm.

  • Code Assignment Algorithm for Highly Parallel Multiple-Valued Combinational Circuits Based on Partition Theory

    Saneaki TAMAKI  Michitaka KAMEYAMA  Tatsuo HIGUCHI  

     
    PAPER-Logic Design

      Vol:
    E76-D No:5
      Page(s):
    548-554

    Design of locally computable combinational circuits is a very important subject to implement high-speed compact arithmetic and logic circuits in VLSI systems. This paper describes a multiple-valued code assignment algorithm for the locally computable combinational circuits, when a functional specification for a unary operation is given by the mapping relationship between input and output symbols. Partition theory usually used in the design of sequential circuits is effectively employed for the fast search for the code assignment problem. Based on the partition theory, mathematical foundation is derived for the locally computable circuit design. Moreover, for permutation operations, we propose an efficient code assignment algorithm based on closed chain sets to reduce the number of combinations in search procedure. Some examples are shown to demonstrate the usefulness of the algorithm.