The search functionality is under construction.

Keyword Search Result

[Keyword] user fairness(2hit)

1-2hit
  • Subchannel and Power Allocation with Fairness Guaranteed for the Downlink of NOMA-Based Networks

    Qingyuan LIU  Qi ZHANG  Xiangjun XIN  Ran GAO  Qinghua TIAN  Feng TIAN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/06/08
      Vol:
    E103-B No:12
      Page(s):
    1447-1461

    This paper investigates the resource allocation problem for the downlink of non-orthogonal multiple access (NOMA) networks. A novel resource allocation method is proposed to deal with the problem of maximizing the system capacity while taking into account user fairness. Since the optimization problem is nonconvex and intractable, we adopt the idea of step-by-step optimization, decomposing it into user pairing, subchannel and power allocation subproblems. First, all users are paired according to their different channel gains. Then, the subchannel allocation is executed by the proposed subchannel selection algorithm (SSA) based on channel priority. Once the subchannel allocation is fixed, to further improve the system capacity, the subchannel power allocation is implemented by the successive convex approximation (SCA) approach where the nonconvex optimization problem is transformed into the approximated convex optimization problem in each iteration. To ensure user fairness, the upper and lower bounds of the power allocation coefficients are derived and combined by introducing the tuning coefficients. The power allocation coefficients are dynamically adjustable by adjusting the tuning coefficients, thus the diversified quality of service (QoS) requirements can be satisfied. Finally, simulation results demonstrate the superiority of the proposed method over the existing methods in terms of system performance, furthermore, a good tradeoff between the system capacity and user fairness can be achieved.

  • A Throughput Enhancement under a Strict Fairness Constraint in OFDMA System

    Sungho HWANG  Soonchul PARK  Ho-Shin CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:1
      Page(s):
    346-349

    In this paper, we mathematically derive a matrix-form solution named resource allocation matrix (RAM) for sub-band allocation in an orthogonal frequency division multiple access (OFDMA) system. The proposed scheme is designed to enhance throughput under a strict user fairness condition such that every user has an equal number of sub-bands per frame. The RAM designates the most preferable sub-band for every user. The proposed scheme is evaluated in terms of throughput and user fairness by comparison with the proportional fairness (PF) scheme and greedy scheme. Numerical results show that the proposed scheme has overwhelming superiority to other schemes in terms of fairness and tight competitive in terms of throughput.