Full Text Views
102
This paper describes ultra-high capacity wavelength-division multiplexed (WDM) transmission technologies for 100-Tbit/s-class optical transport networks (OTNs). First, we review recent advances in ultra-high capacity transmission technologies focusing on spectrally-efficient multi-level modulation techniques and ultra-wideband optical amplification techniques. Next, we describe an ultra-high capacity WDM transmission experiment, in which high speed polarization-division multiplexed (PDM) 16-ary quadrature amplitude modulation (16-QAM), generated by an optical synthesis technique, in combination with coherent detection based on digital signal processing with pilotless algorithms, realize the high spectral efficiency (SE) of 6.4 b/s/Hz. Furthermore, ultra-wideband hybrid optical amplification utilizing distributed Raman amplification (DRA) and C- and extended L-band erbium-doped fiber amplifiers (EDFAs) is shown to realize 10.8-THz total signal bandwidth. By using these techniques, 69.1-Tbit/s transmission is demonstrated over 240-km of pure silica-core fibers (PSCFs). Furthermore, we describe PDM 64-QAM transmission over 160 km of PSCFs with the SE of 9.0 b/s/Hz.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Akihide SANO, Takayuki KOBAYASHI, Eiji YOSHIDA, Yutaka MIYAMOTO, "Ultra-High Capacity Optical Transmission Technologies for 100 Tbit/s Optical Transport Networks" in IEICE TRANSACTIONS on Communications,
vol. E94-B, no. 2, pp. 400-408, February 2011, doi: 10.1587/transcom.E94.B.400.
Abstract: This paper describes ultra-high capacity wavelength-division multiplexed (WDM) transmission technologies for 100-Tbit/s-class optical transport networks (OTNs). First, we review recent advances in ultra-high capacity transmission technologies focusing on spectrally-efficient multi-level modulation techniques and ultra-wideband optical amplification techniques. Next, we describe an ultra-high capacity WDM transmission experiment, in which high speed polarization-division multiplexed (PDM) 16-ary quadrature amplitude modulation (16-QAM), generated by an optical synthesis technique, in combination with coherent detection based on digital signal processing with pilotless algorithms, realize the high spectral efficiency (SE) of 6.4 b/s/Hz. Furthermore, ultra-wideband hybrid optical amplification utilizing distributed Raman amplification (DRA) and C- and extended L-band erbium-doped fiber amplifiers (EDFAs) is shown to realize 10.8-THz total signal bandwidth. By using these techniques, 69.1-Tbit/s transmission is demonstrated over 240-km of pure silica-core fibers (PSCFs). Furthermore, we describe PDM 64-QAM transmission over 160 km of PSCFs with the SE of 9.0 b/s/Hz.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E94.B.400/_p
Copy
@ARTICLE{e94-b_2_400,
author={Akihide SANO, Takayuki KOBAYASHI, Eiji YOSHIDA, Yutaka MIYAMOTO, },
journal={IEICE TRANSACTIONS on Communications},
title={Ultra-High Capacity Optical Transmission Technologies for 100 Tbit/s Optical Transport Networks},
year={2011},
volume={E94-B},
number={2},
pages={400-408},
abstract={This paper describes ultra-high capacity wavelength-division multiplexed (WDM) transmission technologies for 100-Tbit/s-class optical transport networks (OTNs). First, we review recent advances in ultra-high capacity transmission technologies focusing on spectrally-efficient multi-level modulation techniques and ultra-wideband optical amplification techniques. Next, we describe an ultra-high capacity WDM transmission experiment, in which high speed polarization-division multiplexed (PDM) 16-ary quadrature amplitude modulation (16-QAM), generated by an optical synthesis technique, in combination with coherent detection based on digital signal processing with pilotless algorithms, realize the high spectral efficiency (SE) of 6.4 b/s/Hz. Furthermore, ultra-wideband hybrid optical amplification utilizing distributed Raman amplification (DRA) and C- and extended L-band erbium-doped fiber amplifiers (EDFAs) is shown to realize 10.8-THz total signal bandwidth. By using these techniques, 69.1-Tbit/s transmission is demonstrated over 240-km of pure silica-core fibers (PSCFs). Furthermore, we describe PDM 64-QAM transmission over 160 km of PSCFs with the SE of 9.0 b/s/Hz.},
keywords={},
doi={10.1587/transcom.E94.B.400},
ISSN={1745-1345},
month={February},}
Copy
TY - JOUR
TI - Ultra-High Capacity Optical Transmission Technologies for 100 Tbit/s Optical Transport Networks
T2 - IEICE TRANSACTIONS on Communications
SP - 400
EP - 408
AU - Akihide SANO
AU - Takayuki KOBAYASHI
AU - Eiji YOSHIDA
AU - Yutaka MIYAMOTO
PY - 2011
DO - 10.1587/transcom.E94.B.400
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E94-B
IS - 2
JA - IEICE TRANSACTIONS on Communications
Y1 - February 2011
AB - This paper describes ultra-high capacity wavelength-division multiplexed (WDM) transmission technologies for 100-Tbit/s-class optical transport networks (OTNs). First, we review recent advances in ultra-high capacity transmission technologies focusing on spectrally-efficient multi-level modulation techniques and ultra-wideband optical amplification techniques. Next, we describe an ultra-high capacity WDM transmission experiment, in which high speed polarization-division multiplexed (PDM) 16-ary quadrature amplitude modulation (16-QAM), generated by an optical synthesis technique, in combination with coherent detection based on digital signal processing with pilotless algorithms, realize the high spectral efficiency (SE) of 6.4 b/s/Hz. Furthermore, ultra-wideband hybrid optical amplification utilizing distributed Raman amplification (DRA) and C- and extended L-band erbium-doped fiber amplifiers (EDFAs) is shown to realize 10.8-THz total signal bandwidth. By using these techniques, 69.1-Tbit/s transmission is demonstrated over 240-km of pure silica-core fibers (PSCFs). Furthermore, we describe PDM 64-QAM transmission over 160 km of PSCFs with the SE of 9.0 b/s/Hz.
ER -