The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

A Design of High-Speed 4-2 Compressor for Fast Multiplier

Hiroshi MAKINO, Hiroaki SUZUKI, Hiroyuki MORINAKA, Yasunobu NAKASE, Hirofumi SHINOHARA, Koichiro MASHIKO, Tadashi SUMI, Yasutaka HORIBA

  • Full Text Views

    0

  • Cite this

Summary :

This paper describes the design of a high-speed 4-2 compressor for fast multipliers. Through the survey of the six kinds of representative conventional 4-2 compressor (RBA 1-3 and NBA 1-3) in both the redundant binary (RB) and the normal binary (NB) scheme, we extracted two problems that degrades the operating speed. The first is the use of multi-input complex gates and the second is the existence of transmission gates (TG) at the input and/or output stages. To solve these problems, we propose high-speed 4-2 compressors using the RB scheme, which we call the high-speed redundant binary adders (HSRBAs). Six kinds of HSRBAs, HSRBA 1-6, were derived by making the Boolean equations suitable for high-speed CMOS circuits. Among them, HSRBA2, HSRBA4 and HSRBA6 have no multi-input complex gate and input/output TG, and perform at a delay time of 0.89 ns which is the fastest of all 4-2 compressors. We investigated the logical relation between HSRBAs and conventional 4-2 compressors by analyzing the Boolean equations for each circuit. This investigation shows that all the conventional redundant binary adders RBA1-3 have the same logic structures as HSRBA2. We also showed the conventional normal binary adders NBA1-3 have the same logic structures as HSRBA1, HSRBA3 and HSRBA5, respectively. This implies all 4-2 compressors can be derived from the same equation regardless of RB or NB. We applied the HSRBA2 to a 5454-bit multiplier using 0.5-µm CMOS technology. The multiplication time at the supply voltage of 3.3 V was 8.8 ns. This is the fastest 5454-bit multiplier with 0.5-µm CMOS so far, and 83% of the speed improvement is due to the high speed 4-2 compressor.

Publication
IEICE TRANSACTIONS on Electronics Vol.E79-C No.4 pp.538-548
Publication Date
1996/04/25
Publicized
Online ISSN
DOI
Type of Manuscript
Special Section PAPER (Special Issue on Ultra-High-Speed LSIs)
Category

Authors

Keyword