A simple non-destructive depth estimation method for a crack on a metal surface has been proposed. This method is based on our finding that the electromagnetic back scattering from a narrow trough (crack model) on the ground plane causes periodical nulls (dips) as the frequency changes, and the first dip occurs when the depth of the crack becomes nearly one half of the incident wavelength. Dependencies of the crack's aperture and the incident angle have also been studied from rigorous and numerical analyses, and considered as our depth estimation parameters. A simple estimation formula for a crack depth has been derived from these studies. Test measurement has been made to check the accuracy of our estimation formula. Time domain gating process is utilized for isolating the crack scattering spectra buried in the measured frequency RCS data. Tested crack types are a narrow rectangular, a tapered, and a stair approximated crack shapes. It is found that the depth of these cracks can be measured within 3 percent error by our estimation method.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hidenori SEKIGUCHI, Hiroshi SHIRAI, "Electromagnetic Scattering Analysis for Crack Depth Estimation" in IEICE TRANSACTIONS on Electronics,
vol. E86-C, no. 11, pp. 2224-2229, November 2003, doi: .
Abstract: A simple non-destructive depth estimation method for a crack on a metal surface has been proposed. This method is based on our finding that the electromagnetic back scattering from a narrow trough (crack model) on the ground plane causes periodical nulls (dips) as the frequency changes, and the first dip occurs when the depth of the crack becomes nearly one half of the incident wavelength. Dependencies of the crack's aperture and the incident angle have also been studied from rigorous and numerical analyses, and considered as our depth estimation parameters. A simple estimation formula for a crack depth has been derived from these studies. Test measurement has been made to check the accuracy of our estimation formula. Time domain gating process is utilized for isolating the crack scattering spectra buried in the measured frequency RCS data. Tested crack types are a narrow rectangular, a tapered, and a stair approximated crack shapes. It is found that the depth of these cracks can be measured within 3 percent error by our estimation method.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e86-c_11_2224/_p
Copy
@ARTICLE{e86-c_11_2224,
author={Hidenori SEKIGUCHI, Hiroshi SHIRAI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Electromagnetic Scattering Analysis for Crack Depth Estimation},
year={2003},
volume={E86-C},
number={11},
pages={2224-2229},
abstract={A simple non-destructive depth estimation method for a crack on a metal surface has been proposed. This method is based on our finding that the electromagnetic back scattering from a narrow trough (crack model) on the ground plane causes periodical nulls (dips) as the frequency changes, and the first dip occurs when the depth of the crack becomes nearly one half of the incident wavelength. Dependencies of the crack's aperture and the incident angle have also been studied from rigorous and numerical analyses, and considered as our depth estimation parameters. A simple estimation formula for a crack depth has been derived from these studies. Test measurement has been made to check the accuracy of our estimation formula. Time domain gating process is utilized for isolating the crack scattering spectra buried in the measured frequency RCS data. Tested crack types are a narrow rectangular, a tapered, and a stair approximated crack shapes. It is found that the depth of these cracks can be measured within 3 percent error by our estimation method.},
keywords={},
doi={},
ISSN={},
month={November},}
Copy
TY - JOUR
TI - Electromagnetic Scattering Analysis for Crack Depth Estimation
T2 - IEICE TRANSACTIONS on Electronics
SP - 2224
EP - 2229
AU - Hidenori SEKIGUCHI
AU - Hiroshi SHIRAI
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E86-C
IS - 11
JA - IEICE TRANSACTIONS on Electronics
Y1 - November 2003
AB - A simple non-destructive depth estimation method for a crack on a metal surface has been proposed. This method is based on our finding that the electromagnetic back scattering from a narrow trough (crack model) on the ground plane causes periodical nulls (dips) as the frequency changes, and the first dip occurs when the depth of the crack becomes nearly one half of the incident wavelength. Dependencies of the crack's aperture and the incident angle have also been studied from rigorous and numerical analyses, and considered as our depth estimation parameters. A simple estimation formula for a crack depth has been derived from these studies. Test measurement has been made to check the accuracy of our estimation formula. Time domain gating process is utilized for isolating the crack scattering spectra buried in the measured frequency RCS data. Tested crack types are a narrow rectangular, a tapered, and a stair approximated crack shapes. It is found that the depth of these cracks can be measured within 3 percent error by our estimation method.
ER -