The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E86-C No.11  (Publication Date:2003/11/01)

    Special Issue on Analytical and Simulation Methods for Electromagnetic Wave Problems
  • FOREWORD

    Masanori KOSHIBA  

     
    FOREWORD

      Page(s):
    2157-2157
  • Greengard-Rokhlin's Fast Multipole Algorithm for Numerical Calculation of Scattering by N Conducting Circular Cylinders

    Norimasa NAKASHIMA  Mitsuo TATEIBA  

     
    PAPER

      Page(s):
    2158-2166

    The boundary element method (BEM), a representative method of numerical calculation of electromagnetic wave scattering, has been used for solving boundary integral equations. Using BEM, however, we finally have to solve a linear system of L equations expressed by dense coefficient matrix. The floating-point operation is O(L2) due to a matrix-vector product in iterative process. Greengard-Rokhlin's fast multipole algorithm (GRFMA) can reduce the operation to O(L). In this paper, we describe GRFMA and its floating-point operation theoretically. Moreover, we apply the fast Fourier transform to the calculation processes of GRFMA. In numerical examples, we show the experimental results for the computation time, the amount of used memory and the relative error of matrix-vector product expedited by GRFMA. We also discuss the convergence and the relative error of solution obtained by the BEM with GRFMA.

  • Optimum Design of Power Coupling between Two Dielectric Slab Waveguides by the Boundary-Element Method Based on Guided-Mode Extracted Integral Equations

    Dao Ngoc CHIEN  Kazuo TANAKA  Masahiro TANAKA  

     
    PAPER

      Page(s):
    2167-2175

    We show examples of accurate computer-aided design of power coupling between two dielectric slab waveguides of finite length by using the boundary-element method (BEM) based on guided-mode extracted integral equations (GMEIE's). The integral equations derived in this paper can be solved by the conventional BEM. Various properties in numerical calculations of GMEIE's are examined. The reflection and coupling coefficients of the guided wave as well as the scattering power are calculated numerically for the case of incidence TM guided-mode. The presented results are checked by the energy conservation law and reciprocity theorem. The results show that it is possible to design an optimum coupling between two dielectric slab waveguides by using the BEM based on GMEIE's.

  • Transient Phenomenon of Electromagnetic Waves by Time-Dependent Resistive Screen in Waveguide

    Michinari SHIMODA  Ryuichi IWAKI  Masazumi MIYOSHI  Oleg A. TRETYAKOV  

     
    PAPER

      Page(s):
    2176-2183

    The transient phenomenon of electromagnetic waves caused by a time dependent resistive screen in a waveguide is treated. A boundary-value problem is formulated to describe the phenomena, in which the resistivity of the screen varies from one steady state to another in dependence on time. Application of Fourier analysis derives an integral equation, which is approximately solved by the method of least-squares. From the solution of the equation, the transient field is obtained by the inverse Fourier transform. By the use of the incomplete Lipschitz-Hankel integral for the computation of the field, numerical examples showing typical transient phenomenon are attached.

  • An Efficient Analysis of Lossless and Lossy Discontinuities in Waveguide Using Hybrid Numerical Method

    Takeshi SHIRAISHI  Toshio NISHIKAWA  Kikuo WAKINO  Toshihide KITAZAWA  

     
    PAPER

      Page(s):
    2184-2190

    A novel hybrid numerical method, which is based on the extended spectral domain approach combined with the mode-matching method, is applied to evaluate the scattering parameter of waveguide discontinuities. The formulation procedure utilizes the biorthogonal relation in the transformation, and the Green's functions in the spectral domain are obtained easily even in the inhomogeneous lossy regions. The present method does not include the approximate perturbational scheme, and it can evaluate accurately and stably the scattering parameters of either for the thin or thick obstacles made of the wide variety of materials, the lossless dielectrics to highly conductive media, in short computation time. The physical phenomena of transmission through the lossy obstacles are investigated by numerical computations. The results are compared with FEM where FEM computations are feasible, although the FEM computations cannot cover the whole performances of the present method. The good agreement is observed in the corresponding range. The matrix size in this method is smaller than that of other methods. Therefore, the present method is numerically efficient and it would be able to apply for the integrated evaluation of a successive discontinuity. The resonant characteristics of rectangular waveguide cavity are analyzed accurately taking the conductor losses into consideration.

  • FEM-Based Electromagnetic Wave Simulator Running on Some Platforms by Use of Java and a Commercial Tool

    Koichi HIRAYAMA  Naoto KUNIEDA  Yoshio HAYASHI  Masanori KOSHIBA  

     
    PAPER

      Page(s):
    2191-2198

    Making up an electromagnetic wave simulator based on the FEM is tried, which may run on some widely used platforms by use of Java and a single commercial tool. Since the codes and configuration files to be created for this simulator are common, one can construct the simulator running on the platforms at the same time. Using this simulator, the transmission properties of two- and three-dimensional waveguide discontinuities in optical and microwave waveguides are analyzed, the inverse problem in material constant measurement is solved, and the computed results are presented including plots of the electric field distribution.

  • Study of a Microwave Simulation Dedicated Computer, FDTD/FIT Data Flow Machine

    Shun-suke MATSUOKA  Katsunori OHMI  Hideki KAWAGUCHI  

     
    PAPER

      Page(s):
    2199-2206

    For High Performance Computing (HPC) of electromagnetic microwave simulations, the authors present concept for a microwave simulation dedicated computer, FDTD/FIT data flow machine. By constructing a dedicated computer customized to the data flow of the FDTD or FIT scheme, we can obtain maximum performance from the FDTD/FIT simulations and achieve T FLOPS performance computing by using much smaller size computer system than conventional supercomputers. In addition to the basic idea, this paper identifies with solution to some other factors which are needed to execute practical simulations (e.g., boundary condition setting, power input, simulation result data upload to PC, etc.). Moreover, the VHDL design and logical simulation of the 2D data flow machine are also shown as the first step of development of the FDTD/FIT data flow machine.

  • Analysis of Built-In Antennas for Handsets by the Electromagnetic Simulators

    Shogo HAYASHIDA  Hisashi MORISHITA  Kaoru HIRASAWA  Tomoki TANAKA  

     
    PAPER

      Page(s):
    2207-2215

    As the capacity of a personal computer and workstation increases rapidly, many electromagnetic simulators solving antenna problems are widely used. In this paper, the IE3D, FIDELITY and HFSS electromagnetic simulators, which are commercial software products, are applied to the analysis of built-in antennas for handsets in the vicinity of the human body. The IE3D, FIDELITY and HFSS electromagnetic simulators are based on the methods of moment, FDTD (Finite Difference Time Domain) and FEM (Finite Element Method), respectively. Firstly, basic characteristics including the human body's effect of a popular built-in antenna for handset such as PIFA (Planar Inverted-F Antenna) are obtained by the IE3D, FIDELITY and HFSS electromagnetic simulators, and calculated results are compared with measured results. Secondly, on the basis of newly considered design concepts for a handset antenna, a folded loop antenna for handset, which we have proposed in order to reduce the influence of the human body, is taken as an example of a balance-fed antenna and is analyzed theoretically and experimentally including the influence of the human body. In a result, calculated results by these three kinds of electromagnetic simulators are in good agreement with measured results and it is confirmed that these simulators are very effective in analyzing the handset antenna in the vicinity of the human body.

  • A Design Scheme for Electromagnetic Shielding Clothes via Numerical Computation and Time Domain Measurements

    Satoru KUROKAWA  Toru SATO  

     
    PAPER

      Page(s):
    2216-2223

    Electromagnetic shielding clothes for reducing human exposure to radio waves have been commercialized. However, their effect has so far been confirmed only in the form of the raw material. In this paper, we develop a new compact scheme for measuring electromagnetic radiations using a short dipole antenna and Gaussian pulses in order to evaluate the effect of the shielding clothes over a wide frequency range with the aid of time-domain measurements and FDTD computation. The proposed method is based on a time-domain analysis technique and pulse compression technique, which enables the user to separate the direct transmission wave from the reflection from the floor as well as from the refracted wave around the neck of the clothes. The direct advantage is that measurements can be made in an ordinary laboratory without the function of an electromagnetic anechoic chamber. Also, we can separate direct transmission wave and diffraction wave from the measurement result by using pulse compression technique, then each frequency characteristic of the shielding shirt can be evaluated. The performance of the separation is confirmed by comparing the measurements with those of a shirt with no opening. We further demonstrate the possibility of predicting the effective conductivity of the material as a function of frequency by comparing the measured results with realistic FDTD computations, which will enable us to design a shielding shirt via numerical means.

  • Electromagnetic Scattering Analysis for Crack Depth Estimation

    Hidenori SEKIGUCHI  Hiroshi SHIRAI  

     
    PAPER

      Page(s):
    2224-2229

    A simple non-destructive depth estimation method for a crack on a metal surface has been proposed. This method is based on our finding that the electromagnetic back scattering from a narrow trough (crack model) on the ground plane causes periodical nulls (dips) as the frequency changes, and the first dip occurs when the depth of the crack becomes nearly one half of the incident wavelength. Dependencies of the crack's aperture and the incident angle have also been studied from rigorous and numerical analyses, and considered as our depth estimation parameters. A simple estimation formula for a crack depth has been derived from these studies. Test measurement has been made to check the accuracy of our estimation formula. Time domain gating process is utilized for isolating the crack scattering spectra buried in the measured frequency RCS data. Tested crack types are a narrow rectangular, a tapered, and a stair approximated crack shapes. It is found that the depth of these cracks can be measured within 3 percent error by our estimation method.

  • Inverse Scattering of a Two-Dimensional Dielectric Object by Genetic Algorithms

    Chun Jen LIN  Chien-Ching CHIU  Yi-Da WU  

     
    PAPER

      Page(s):
    2230-2236

    In this paper, an efficient optimization algorithm for solving the inverse problem of a two-dimensional lossless homogeneous dielectric object is investigated. A lossless homogeneous dielectric cylinder of unknown permittivity scatters the incident wave in free space and the scattered fields are recorded. Based on the boundary condition and the incident field, a set of nonlinear surface integral equation is derived. The imaging problem is reformulated into optimization problem and the steady-state genetic algorithm is employed to reconstruct the shape and the dielectric constant of the object. Numerical results show that the permittivity of the cylinders can be successfully reconstructed even when the permittivity is fairly large. The effect of random noise on imaging reconstruction is also investigated.

  • Genetic Algorithm Approach to Estimate Radar Cross Section of Dielectric Objects

    Elif AYDIN  K. Cem NAKIBOGLU  

     
    LETTER

      Page(s):
    2237-2240

    Genetic algorithm (GA) is a widely used numerical technique to simplify some analytical solutions in electromagnetic theory. Genetic algorithms can be combined with the geometric optics method to tackle electromagnetic scattering problems. This paper presents an extrapolation procedure, which derived, as a first step, a functional representation of the radar cross section (RCS) of three different dielectric objects that was computed via the Mie solution or the method of moments (MOM). An algorithm was employed to fit the scattering characteristics of dielectric objects at high frequencies.

  • Special Issue on Electronic Displays
  • FOREWORD

    Setsuo KANEKO  Kenji NAKAZAWA  

     
    FOREWORD

      Page(s):
    2241-2242
  • Direct Molding Process to Integrate Multi-Layer Optical Components on a Display Substrate

    Fumiaki YAMADA  Yoichi TAIRA  

     
    PAPER-LCD Technology

      Page(s):
    2243-2248

    We developed a process to fabricate optical functions such as, lens, prism, or diffuser directly on to a glass substrate. Processes include precision mastering by diamond cutting, and multi-layer photopolymer (2P) molding process to realize flat surface and integration of multiple functions with a good alignment within few micrometers.

  • Electro-Optical Properties of OCB Mode for Multi-Media Application

    Changhun LEE  Haksun CHANG  Seonhong AHN  Kunjong LEE  

     
    PAPER-LCD Technology

      Page(s):
    2249-2252

    We have obtained high performance and low voltage driving OCB panel by reducing the critical voltage and retardation matching between liquid crystal layer and compensation films. Flattening color filter layer and optimizing rubbing process have minimized the critical voltage in the panel. In addition, an appropriate retardation of the film and LC layer has scanned to achieve low driving voltage and high transmission. Especially, by adopting new driving scheme, we considerably reduced the initial bend transition time, which is known as one of drawbacks in OCB mode. As a result, we developed the proto-type 17" WXGA OCB panel with less than 5 V drive, over 90% of TN light efficiency and over 80 degree for all viewing direction except for rubbing direction including color shift as well as high-speed response time.

  • Study of Intercalation of Water into BaMgAl10O17:Eu2+ (BAM) Blue Phosphor for Plasma Display Panels

    Toshiaki ONIMARU  Shin'ya FUKUTA  Tomonari MISAWA  Koichi SAKITA  Keiichi BETSUI  

     
    PAPER-PDP Technology

      Page(s):
    2253-2258

    We investigated the intercalation of water into BaMgAl10O17:Eu2+ (BAM), a blue phosphor that is used in plasma display panels. The adsorption and desorption characteristics of water with BAM have hysteresis; showing that water is intercalated into BAM. Using thermal analysis techniques, we suggested that water hydrated to barium ions caused oxidation. We found that the water intercalated into BAM played an important role in the oxidation of Eu2+ between 450 and 600, and contributed to a 10% degradation of luminance. In contrast, oxidation due to oxygen is a principal factor in degradation above 600 through baking process in air.

  • Development of Electron Gun for High Brightness CRT

    Tetsuya SHIROISHI  Shuhei NAKATA  Nobuhide HINOMOTO  Katsumi OONO  Fumiaki MURAKAMI  Soichiro OKUDA  

     
    PAPER-CRT Technology

      Page(s):
    2259-2263

    We've been developing new electron guns for a high brightness CRT. The electron guns were modified to increase the emission current without the increase of the driving voltage. We achieved the high brightness CRT with "low cut-off electron gun" and the gun was successfully introduced into our multimedia CRT. Now we are developing next generation gun or "double drive electron gun" for larger screen CRT. The gun can emit about double current in comparison with the "low cut-off electron gun."

  • The Effect of Focus Voltage and Beam Repulsion on the Microscopic Electron Spot Shape

    A.A. Seyno SLUYTERMAN  Tjerk G. SPANJER  

     
    PAPER-CRT Technology

      Page(s):
    2264-2268

    The size of the microscopic electron spot is an important parameter for the white-uniformity of a CRT. It changes as a function of the focus voltage and beam repulsion. This paper explains the mechanism behind this phenomenon. The model is supported by means of measurements.

  • A 17-Inch WXGA Full-Color OLED Display Using the Polymer Ink-Jet Technology

    Makoto SHIBUSAWA  Michiya KOBAYASHI  Jun HANARI  Kazuyuki SUNOHARA  Nobuki IBARAKI  

     
    PAPER-OLED Technology

      Page(s):
    2269-2274

    We have developed a 17-inch WXGA full-color polymer OLED display by using newly developed ink-jet printing method. On the ink-jet technology, both droplet volume and landing position were precisely controlled pixel by pixel in order to get luminance uniformity. A pixel circuit having Vth variation-cancellation was adopted and the circuit was modified to realize high uniformity and high gray scale reproduction under the short horizontal period operation. Correction on gamma profile difference among RGB OLEDs was achieved by optimizing on configuration between integrated source driver circuit and outer reference voltage circuit in spite of using a common source driver IC having only one gamma profile. Peak control system, that is important for the large size and high luminance display, was utilized and improved image quality on human feeling and actual power consumption. With these efforts a uniform picture with 260,000 colors and wide viewing angle was achieved. It was proved that the ink-jet method was the optimal manufacturing technology for large-size and high-resolution OLED displays. And we found there is no singular problem on the large size OLED display utilized the ink-jet technology.

  • High-Resolution Beam Profiler for Engineering Laterally-Grown Grain Morphology

    Masayuki JYUMONJI  Yoshinobu KIMURA  Masato HIRAMATSU  Yukio TANIGUCHI  Masakiyo MATSUMURA  

     
    LETTER

      Page(s):
    2275-2277

    A two-dimensional laser beam profiler has been developed that can measure the intensity distribution on a sample surface of a single-shot of an excimer-laser light beam from not only the macroscopic viewpoint, but also the microscopic viewpoint, which is important to excimer-laser triggered lateral large-grain growth of Si. A resolution as fine as 0.4 µm was obtained with a field of view of as large as 30 µm 30 µm. The effects of homogenizers, phase-shifters, and their combination on beam profiles were quantitatively investigated by using this apparatus. The relationship between the microscopic beam profile and the surface morphology of laterally grown grains was also examined.

  • Regular Section
  • Equivalent Circuit Model of InAlAs/InGaAs/InP Heterostructure Metal-Semiconductor-Metal Photodetectors

    Koichi IIYAMA  Junya ASHIDA  Akira TAKEMOTO  Saburo TAKAMIYA  

     
    PAPER-Lasers, Quantum Electronics

      Page(s):
    2278-2282

    One-dimentional equivalent circuit model of a heterostructure InAlAs/InGaAs/InP metal-semiconductor-metal photodetector is discussed. In this photodetector, InGaAs is used as an optical absorption layer and the InAlAs is used for Schottky barrier enhanement. The measured S11 parameter deviates from equi-resistance lines on the Smith chart, indicating the equivalent circuit is different from the conventional equivalent circuit using a series resistance, a depletion region capacitance and a depletion region resistance. The difference is due to band discontinuity at the heterojunctions, and we propose a equivalent circuit taking account of the band discontinuity. The band discontinuity is expressed by parallel combination of a resistance and a capacitance. The measured S11 parameter can be fitted well with the calculated S11 parameter from the proposed equivalent circuit, and we can successfully extract the device parameters from the fitted curve.

  • 26 GHz Bandpass Filter and Duplexer Using TM11δ Mode Dielectric Resonators with High-Q Performance and Compact Configuration

    Akira ENOKIHARA  Hideki NANBA  Toshiaki NAKAMURA  Kojiro OKUYAMA  Toshio ISHIZAKI  Tomoki UWANO  

     
    PAPER-Microwaves, Millimeter-Waves

      Page(s):
    2283-2291

    26 GHz bandpass filter and duplexer using TM11δ rectangular-mode dielectric cavity resonators are proposed. These have a configuration compact and suitable for mounting on circuit boards. The resonators consisting of the Ba(Mg,Ta)O3 ceramic material showed a high quality factor value of 2600, which is roughly comparable to that of conventional E-plane waveguide filters. The dielectric losses of the ceramic material were experimentally evaluated from the viewpoint of the high frequency operation and the dielectric loss tangent of 7.410-5 was observed at 20 GHz. A three-stage Tchebyscheff bandpass filter with 0.4% relative bandwidth was fabricated and the passband insertion loss was 1.7 dB. A duplexer designed with two TM11δ mode filters and a microstrip T-junction is also presented.

  • Fullwave MoM-SOC Technique for Extraction of Equivalent Circuit Models of Coplanar Waveguide Discontinuities: CPW- and CSL-Mode Cases

    Lei ZHU  Toshiyuki YAKABE  

     
    PAPER-Microwaves, Millimeter-Waves

      Page(s):
    2292-2299

    Field-theoretical equivalent circuit models of a variety of coplanar waveguide (CPW) lumped-element discontinuities for two dominant modes are characterized by executing the short-open calibration (SOC) procedure in the fullwave method of moments (MoM). In our developed MoM platform, the impressed current sources with even or odd symmetry are introduced at the selected ports in order to separately excite the even and odd dominant modes, i.e., CPW- and CSL-mode. After the port network parameters are numerically derived using the Galerkin's technique, the two SOC standards are defined and evaluated in the self-consistent MoM to effectively de-embed and extract the core model parameters of a CPW circuit or discontinuity. After the validation is confirmed via comparison with the published data, extensive investigation is carried out to for the first time demonstrate the distinctive model properties of one-port CPW short- and open-end elements as well as two-port inductive and capacitive coupling elements with resorting to its two different dominant modes.

  • Analysis and Implementation of Proportional Current Feedback Technique for Digital PWM DC-DC Converters

    Chung-Hsien TSO  Jiin-Chuan WU  

     
    PAPER-Electronic Circuits

      Page(s):
    2300-2308

    In this paper, a novel technique using proportional current feedback is proposed to improve dynamic response of digital PWM DC-DC converters. Generally, digital controllers are implemented using microprocessors or DSPs. Additional A/D converters are required to sense feedback signals. Proposed simple structure makes it feasible to integrate both A/D converter and digital controller on a single chip. System complexity and hardware cost are therefore greatly reduced. A behavioral time domain circuit model is proposed and analyzed using MATLAB. Both simulation and experimental results showed satisfactory performance to meet power requirements of microprocessors.

  • Demodulation of Radio Frequency Interference in CMOS Operational Amplifiers

    Franco FIORI  Paolo S. CROVETTI  

     
    PAPER-Electronic Circuits

      Page(s):
    2309-2319

    In this paper a second order Volterra series model of an operational amplifier (opamp) circuit is presented. Such a model is suitable to the investigation of the rectification and demodulation effects of radio frequency (RF) interference superimposed on the nominal input signals and on the power supply voltage of an opamp. On the basis of the new model, some design criteria to improve the immunity of opamps to RF interference are proposed. Model predictions are verified by comparison with experimental test results.

  • A Row-Parallel Position Detector for High-Speed 3-D Camera Based on Light-Section Method

    Yusuke OIKE  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER-Electronic Circuits

      Page(s):
    2320-2328

    A high-speed 3-D camera has a future possibility of wide variety of application fields such as quick inspection of industrial components, observation of motion/destruction of a target object, and fast collision prevention. In this paper, a row-parallel position detector for a high-speed 3-D camera based on a light-section method is presented. In our row-parallel search method, the positions of activated pixels are quickly detected by a row-parallel search circuit in pixel and a row-parallel address acquisition of O(log N) cycles in N-pixel horizontal resolution. The architecture keeps high-speed position detection in high pixel resolution. We have designed and fabricated the prototype position sensor with a 12816 pixel array in 0.35 µm CMOS process. The measurement results show it achieves quick activated-position acquisition of 450 ns for "beyond-real-time" 3-D imaging and visual feedback. The high-speed position detection of the scanning sheet beam is demonstrated.

  • Voltage-Tunable Differential Integrator and Differentiator Using Current Feedback Amplifier

    Rabindranath NANDI  Arijit GOSWAMI  Rajendra K. NAGARIA  Salil K. SANYAL  

     
    LETTER-Electronic Circuits

      Page(s):
    2329-2331

    Some new differential input ideal differentiator and integrator function circuits using the current feedback amplifier (CFA) device are presented. The time constant (τo) is tunable by the control voltage (Vc) of a multiplier element connected appropriately around the feedback loop. The CFA device port errors () have insignificant effects on (τo). Test results based on hardware implementation and macromodel simulation are included; the proposed circuits exhibited good high frequency response with low phase errors (θe 2) upto about 450 kHz.

  • Thermal Stability of W2N Compound Barrier in W/W2N/poly-Si Gate Electrode Configuration

    Atsushi NOYA  Mayumi B. TAKEYAMA  

     
    LETTER-Electronic Materials

      Page(s):
    2332-2335

    A high temperature performance of a W2N compound barrier in the model electrode configuration of W/W2N/poly-Si was examined. The stacked electrode was fairly stable upon annealing at 850 for 1 h. In this electrode configuration, the decomposition and outdiffusion of nitrogen, which were observed in the electrode with a WNx barrier incorporating nitrogen atoms at the interstitial sites in the bcc W lattice, were completely suppressed. We interpreted that the obtained excellent high temperature performance was attributed to the strong chemical interaction forming chemical bonds between nitrogen and W atoms in the W2N compound barrier.

  • Characterization of 10 µm Thick Porous Silicon Dioxide Obtained by Complex Oxidation Process for RF Application

    Jeong-Yong PARK  Jong-Hyun LEE  

     
    LETTER-Semiconductor Materials and Devices

      Page(s):
    2336-2340

    This paper proposes a 10 µm thick oxide layer structure, which can be used as a substrate for RF circuits. The structure has been fabricated by anodic reaction and complex oxidation, which is a combined process of low temperature thermal oxidation (500, for 1 hr at H2O/O2) and a rapid thermal oxidation (RTO) process (1050, for 1 min). The electrical characteristics of oxidized porous silicon layer (OPSL) were almost the same as those of standard thermal silicon dioxide. The leakage current through the OPSL of 10 µm was about 100-500 pA in the range of 0 V to 50 V. The average value of breakdown field was about 3.9 MV/cm. From the X-ray photo-electron spectroscopy (XPS) analysis, surface and internal oxide films of OPSL, prepared by complex process, were confirmed to be completely oxidized. Also the role of RTO was important for the densification of the porous silicon layer (PSL), oxidized at a lower temperature. For the RF test of Si substrate, with thick silicon dioxide layer, we have fabricated high performance passive devices such as coplanar waveguide (CPW) on OPSL substrate. The insertion loss of CPW on OPSL prepared by complex oxidation process was -0.39 dB at 4 GHz and similar to that of CPW on OPSL prepared at a temperature of 1050 (1 hr at H2O/O2). Also the return loss of CPW on OPSL prepared by complex oxidation process was -23 dB at 10 GHz which is similar to that of CPW on OPSL prepared by high temperature oxidation.

  • A 30 V High Voltage NMOS Structure Design in Standard 5 V CMOS Processes

    Tzu-Chao LIN  Jiin-Chuan WU  

     
    LETTER-Semiconductor Materials and Devices

      Page(s):
    2341-2345

    This paper describes the robust design of the 30 V high voltage NMOS (HVNMOS) structure implemented in a 0.6 µm 5 V standard CMOS processes without any additional masks or process steps. The structure makes use of the field oxide (FOX) and light doping N-well to increase the drain to gate and drain to bulk breakdown voltages, respectively. By varying the six spacing parameters: the channel length, gate overlap FOX, N-well overlap channel length, poly to the active area of the drain (OD2), metal extend beyond the OD2 and N-well extend beyond the OD2 in HVNMOS structure, the breakdown voltage can be improved. The experimental results show that the breakdown voltage of the normal NMOS is 11 V, and the breakdown voltage of the HVNMOS is increased to over 30 V. With the optimized layout parameters of the HVNMOS, it can be increased to 38 V.

  • A Low-Power Implementation Scheme of Interpolation FIR Filters Using Distributed Arithmetic

    Sangyun HWANG  Gunhee HAN  Sungho KANG  Jaeseok KIM  

     
    LETTER-Integrated Electronics

      Page(s):
    2346-2350

    This paper presents a low-power implementation scheme of interpolation FIR filters using distributed arithmetic (DA). The key idea of the proposed scheme involves look-up tables generating only nonnegative values. Thus, the proposed scheme can minimize the dynamic power consumption of interpolation FIR filters using DA without additional hardware. When used for implementing a pulse shaping filter for CDMA2000 mobile stations, the proposed filter not only has almost the same hardware complexity as the conventional one; it also has approximately 43% reduced power consumption.