We achieved detailed characterization of resonant tunneling chaos generator circuits in microwave frequency range. The circuit is analogous to Duffing oscillator, where the third-order nonlinear potential term is emulated by the nonlinear current-voltage curve of the resonant tunneling diode. The circuit includes a periodic reset mechanism to output identical chaos signal, which is essential to observe chaos signal on a sampling oscilloscope. Though this was shown to be effective in our previous papers, the length of the waveforms to observe is limited to rather short period, and it was unclear if this technique can be used for detailed characterization of such high-frequency chaos. In this paper, we improved the circuit design to observe longer waveforms, and demonstrated that the detailed characterization is possible using this periodic resetting technique with a sampling oscilloscope. The hybrid integration scheme is also used in this paper, which allows the easiest and shortest way to mimic a circuit as per circuit design, and precise estimation of circuit parameters aiming to eliminate circuit-related abnormalities. We provide deep insight into the dynamics associated with our circuit, starting from the single period, double period, chaos, and triple period regimes, by extracting power spectra, return maps, phase portraits, and bifurcation diagrams from acquired time series using sampling oscilloscope. Our method to study microwave chaotic signals can be applied to much higher frequency ranges, such as THz frequency range.
Umer FAROOQ
University of Toyama
Masayuki MORI
University of Toyama
Koichi MAEZAWA
University of Toyama
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Umer FAROOQ, Masayuki MORI, Koichi MAEZAWA, "Experimental Characterization of Resonant Tunneling Chaos Generator Circuits in Microwave Frequency Range" in IEICE TRANSACTIONS on Electronics,
vol. E106-C, no. 5, pp. 174-183, May 2023, doi: 10.1587/transele.2022ECP5037.
Abstract: We achieved detailed characterization of resonant tunneling chaos generator circuits in microwave frequency range. The circuit is analogous to Duffing oscillator, where the third-order nonlinear potential term is emulated by the nonlinear current-voltage curve of the resonant tunneling diode. The circuit includes a periodic reset mechanism to output identical chaos signal, which is essential to observe chaos signal on a sampling oscilloscope. Though this was shown to be effective in our previous papers, the length of the waveforms to observe is limited to rather short period, and it was unclear if this technique can be used for detailed characterization of such high-frequency chaos. In this paper, we improved the circuit design to observe longer waveforms, and demonstrated that the detailed characterization is possible using this periodic resetting technique with a sampling oscilloscope. The hybrid integration scheme is also used in this paper, which allows the easiest and shortest way to mimic a circuit as per circuit design, and precise estimation of circuit parameters aiming to eliminate circuit-related abnormalities. We provide deep insight into the dynamics associated with our circuit, starting from the single period, double period, chaos, and triple period regimes, by extracting power spectra, return maps, phase portraits, and bifurcation diagrams from acquired time series using sampling oscilloscope. Our method to study microwave chaotic signals can be applied to much higher frequency ranges, such as THz frequency range.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2022ECP5037/_p
Copy
@ARTICLE{e106-c_5_174,
author={Umer FAROOQ, Masayuki MORI, Koichi MAEZAWA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Experimental Characterization of Resonant Tunneling Chaos Generator Circuits in Microwave Frequency Range},
year={2023},
volume={E106-C},
number={5},
pages={174-183},
abstract={We achieved detailed characterization of resonant tunneling chaos generator circuits in microwave frequency range. The circuit is analogous to Duffing oscillator, where the third-order nonlinear potential term is emulated by the nonlinear current-voltage curve of the resonant tunneling diode. The circuit includes a periodic reset mechanism to output identical chaos signal, which is essential to observe chaos signal on a sampling oscilloscope. Though this was shown to be effective in our previous papers, the length of the waveforms to observe is limited to rather short period, and it was unclear if this technique can be used for detailed characterization of such high-frequency chaos. In this paper, we improved the circuit design to observe longer waveforms, and demonstrated that the detailed characterization is possible using this periodic resetting technique with a sampling oscilloscope. The hybrid integration scheme is also used in this paper, which allows the easiest and shortest way to mimic a circuit as per circuit design, and precise estimation of circuit parameters aiming to eliminate circuit-related abnormalities. We provide deep insight into the dynamics associated with our circuit, starting from the single period, double period, chaos, and triple period regimes, by extracting power spectra, return maps, phase portraits, and bifurcation diagrams from acquired time series using sampling oscilloscope. Our method to study microwave chaotic signals can be applied to much higher frequency ranges, such as THz frequency range.},
keywords={},
doi={10.1587/transele.2022ECP5037},
ISSN={1745-1353},
month={May},}
Copy
TY - JOUR
TI - Experimental Characterization of Resonant Tunneling Chaos Generator Circuits in Microwave Frequency Range
T2 - IEICE TRANSACTIONS on Electronics
SP - 174
EP - 183
AU - Umer FAROOQ
AU - Masayuki MORI
AU - Koichi MAEZAWA
PY - 2023
DO - 10.1587/transele.2022ECP5037
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E106-C
IS - 5
JA - IEICE TRANSACTIONS on Electronics
Y1 - May 2023
AB - We achieved detailed characterization of resonant tunneling chaos generator circuits in microwave frequency range. The circuit is analogous to Duffing oscillator, where the third-order nonlinear potential term is emulated by the nonlinear current-voltage curve of the resonant tunneling diode. The circuit includes a periodic reset mechanism to output identical chaos signal, which is essential to observe chaos signal on a sampling oscilloscope. Though this was shown to be effective in our previous papers, the length of the waveforms to observe is limited to rather short period, and it was unclear if this technique can be used for detailed characterization of such high-frequency chaos. In this paper, we improved the circuit design to observe longer waveforms, and demonstrated that the detailed characterization is possible using this periodic resetting technique with a sampling oscilloscope. The hybrid integration scheme is also used in this paper, which allows the easiest and shortest way to mimic a circuit as per circuit design, and precise estimation of circuit parameters aiming to eliminate circuit-related abnormalities. We provide deep insight into the dynamics associated with our circuit, starting from the single period, double period, chaos, and triple period regimes, by extracting power spectra, return maps, phase portraits, and bifurcation diagrams from acquired time series using sampling oscilloscope. Our method to study microwave chaotic signals can be applied to much higher frequency ranges, such as THz frequency range.
ER -