In order to reduce the memory cell errors in real-usage of NAND flash-based SSD, real usage-based precise reliability test for NAND flash of SSDs has been proposed. Reliability of the NAND flash memories of the SSDs is seriously degraded as the scaling of memory cells. However, conventional simple reliability tests of read-disturb and data-retention cannot give the same result as the real-life VTH shift and memory cell errors. To solve this problem, the proposed reliability test precisely reproduces the real memory cell failures by emulating the complicated read, write, and data-retention with SSD emulator. In this paper, the real-life VTH shift and memory cell errors between two generations of NAND flash memory with different characterized real workloads are provided. Using the proposed test method, 1.6-times BER difference is observed when write-cold and read-hot workload (hm_1) and write-hot and read-hot workload (prxy_1) are compared in 1Ynm MLC NAND flash. In addition, by NAND flash memory scaling from 1Xnm to 1Ynm generations, the discrepancy of error numbers between the conventional reliability test result and actual reliability measured by proposed reliability test is increased by 6.3-times. Finally, guidelines for read reference voltage shifts and strength of ECCs are given to achieve high memory cell reliability for various workloads.
Yusuke YAMAGA
Chuo University
Chihiro MATSUI
Chuo University
Yukiya SAKAKI
Chuo University
Ken TAKEUCHI
Chuo University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yusuke YAMAGA, Chihiro MATSUI, Yukiya SAKAKI, Ken TAKEUCHI, "Reliability Analysis of Scaled NAND Flash Memory Based SSDs with Real Workload Characteristics by Using Real Usage-Based Precise Reliability Test" in IEICE TRANSACTIONS on Electronics,
vol. E101-C, no. 4, pp. 243-252, April 2018, doi: 10.1587/transele.E101.C.243.
Abstract: In order to reduce the memory cell errors in real-usage of NAND flash-based SSD, real usage-based precise reliability test for NAND flash of SSDs has been proposed. Reliability of the NAND flash memories of the SSDs is seriously degraded as the scaling of memory cells. However, conventional simple reliability tests of read-disturb and data-retention cannot give the same result as the real-life VTH shift and memory cell errors. To solve this problem, the proposed reliability test precisely reproduces the real memory cell failures by emulating the complicated read, write, and data-retention with SSD emulator. In this paper, the real-life VTH shift and memory cell errors between two generations of NAND flash memory with different characterized real workloads are provided. Using the proposed test method, 1.6-times BER difference is observed when write-cold and read-hot workload (hm_1) and write-hot and read-hot workload (prxy_1) are compared in 1Ynm MLC NAND flash. In addition, by NAND flash memory scaling from 1Xnm to 1Ynm generations, the discrepancy of error numbers between the conventional reliability test result and actual reliability measured by proposed reliability test is increased by 6.3-times. Finally, guidelines for read reference voltage shifts and strength of ECCs are given to achieve high memory cell reliability for various workloads.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E101.C.243/_p
Copy
@ARTICLE{e101-c_4_243,
author={Yusuke YAMAGA, Chihiro MATSUI, Yukiya SAKAKI, Ken TAKEUCHI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Reliability Analysis of Scaled NAND Flash Memory Based SSDs with Real Workload Characteristics by Using Real Usage-Based Precise Reliability Test},
year={2018},
volume={E101-C},
number={4},
pages={243-252},
abstract={In order to reduce the memory cell errors in real-usage of NAND flash-based SSD, real usage-based precise reliability test for NAND flash of SSDs has been proposed. Reliability of the NAND flash memories of the SSDs is seriously degraded as the scaling of memory cells. However, conventional simple reliability tests of read-disturb and data-retention cannot give the same result as the real-life VTH shift and memory cell errors. To solve this problem, the proposed reliability test precisely reproduces the real memory cell failures by emulating the complicated read, write, and data-retention with SSD emulator. In this paper, the real-life VTH shift and memory cell errors between two generations of NAND flash memory with different characterized real workloads are provided. Using the proposed test method, 1.6-times BER difference is observed when write-cold and read-hot workload (hm_1) and write-hot and read-hot workload (prxy_1) are compared in 1Ynm MLC NAND flash. In addition, by NAND flash memory scaling from 1Xnm to 1Ynm generations, the discrepancy of error numbers between the conventional reliability test result and actual reliability measured by proposed reliability test is increased by 6.3-times. Finally, guidelines for read reference voltage shifts and strength of ECCs are given to achieve high memory cell reliability for various workloads.},
keywords={},
doi={10.1587/transele.E101.C.243},
ISSN={1745-1353},
month={April},}
Copy
TY - JOUR
TI - Reliability Analysis of Scaled NAND Flash Memory Based SSDs with Real Workload Characteristics by Using Real Usage-Based Precise Reliability Test
T2 - IEICE TRANSACTIONS on Electronics
SP - 243
EP - 252
AU - Yusuke YAMAGA
AU - Chihiro MATSUI
AU - Yukiya SAKAKI
AU - Ken TAKEUCHI
PY - 2018
DO - 10.1587/transele.E101.C.243
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E101-C
IS - 4
JA - IEICE TRANSACTIONS on Electronics
Y1 - April 2018
AB - In order to reduce the memory cell errors in real-usage of NAND flash-based SSD, real usage-based precise reliability test for NAND flash of SSDs has been proposed. Reliability of the NAND flash memories of the SSDs is seriously degraded as the scaling of memory cells. However, conventional simple reliability tests of read-disturb and data-retention cannot give the same result as the real-life VTH shift and memory cell errors. To solve this problem, the proposed reliability test precisely reproduces the real memory cell failures by emulating the complicated read, write, and data-retention with SSD emulator. In this paper, the real-life VTH shift and memory cell errors between two generations of NAND flash memory with different characterized real workloads are provided. Using the proposed test method, 1.6-times BER difference is observed when write-cold and read-hot workload (hm_1) and write-hot and read-hot workload (prxy_1) are compared in 1Ynm MLC NAND flash. In addition, by NAND flash memory scaling from 1Xnm to 1Ynm generations, the discrepancy of error numbers between the conventional reliability test result and actual reliability measured by proposed reliability test is increased by 6.3-times. Finally, guidelines for read reference voltage shifts and strength of ECCs are given to achieve high memory cell reliability for various workloads.
ER -