The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] solid-state drive(9hit)

1-9hit
  • System Performance Comparison of 3D Charge-Trap TLC NAND Flash and 2D Floating-Gate MLC NAND Flash Based SSDs

    Mamoru FUKUCHI  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER-Integrated Electronics

      Vol:
    E103-C No:4
      Page(s):
    161-170

    This paper analyzes the system-level performance of Storage Class Memory (SCM)/NAND flash hybrid solid-state drives (SSDs) and SCM/NAND flash/NAND flash tri-hybrid SSDs in difference types of NAND flash memory. There are several types of NAND flash memory, i.e. 2-dimensional (2D) or 3-dimensional (3D), charge-trap type (CT) and floating-gate type (FG) and multi-level cell (MLC) or triple-level cell (TLC). In this paper, the following four types of NAND flash memory are analyzed: 1) 3D CT TLC, 2) 3D FG TLC, 3) 2D FG TLC, and 4) 2D FG MLC NAND flash. Regardless of read- and write-intensive workloads, SCM/NAND flash hybrid SSD with low cost 3D CT TLC NAND flash achieves the best performance that is 20% higher than that with higher cost 2D FG MLC NAND flash. The performance improvement of 3D CT TLC NAND flash can be obtained by the short write latency. On the other hand, in case of tri-hybrid SSD, SCM/3D CT TLC/3D CT TLC NAND flash tri-hybrid SSD improves the performance 102% compared to SCM/2D FG MLC/3D CT TLC NAND flash tri-hybrid SSD. In addition, SCM/2D FG MLC/2D FG MLC NAND flash tri-hybrid SSD shows 49% lower performance than SCM/2D FG MLC/3D CT TLC NAND flash tri-hybrid SSD. Tri-hybrid SSD flash with 3D CT TLC NAND flash is the best performance in tri-hybrid SSD thanks to larger block size and word-line (WL) write. Therefore, in 3D CT TLC NAND flash based SSDs, higher cost MLC NAND flash is not necessary for hybrid SSD and tri-hybrid SSD for data center applications.

  • Analysis of SCM-Based SSD Performance in Consideration of SCM Access Unit Size, Write/Read Latencies and Application Request Size

    Hirofumi TAKISHITA  Yutaka ADACHI  Chihiro MATSUI  Ken TAKECUHI  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    253-262

    NAND flash memories used in solid-state drives (SSDs) will be replaced with storage-class memories (SCMs), which are comparable with NAND flash in their cost, and with DRAM in their speed. This paper describes the performance difference of the SCM/NAND flash hybrid SSD and the SCM-based SSD with between sector-unit read (512 Byte) and page-unit read (16 KByte, NAND flash page-size) using synthetic and real workload. Also, effect of the SCM read-unit size on SSD performance are analyzed. When SCM write/read latency is 0.1 us, performance difference of the SCM/NAND flash hybrid SSD with between page- and sector-unit read is about 1% and 6% at most for the write-intensive and read-intensive workloads, respectively. However, performance of the SCM-based SSD is significantly improved when sector-unit read is used because extra read latency does not occur. Especially, the SCM-based SSD IOPS is improved by 131% for proj_3 (read-hot-random), because its read request size is small but its read request ratio is large. This paper also shows IOPS of SCM-based SSD write/read with sector-unit read can be predicted by the average write/read request size of workloads.

  • Reliability Analysis of Scaled NAND Flash Memory Based SSDs with Real Workload Characteristics by Using Real Usage-Based Precise Reliability Test

    Yusuke YAMAGA  Chihiro MATSUI  Yukiya SAKAKI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    243-252

    In order to reduce the memory cell errors in real-usage of NAND flash-based SSD, real usage-based precise reliability test for NAND flash of SSDs has been proposed. Reliability of the NAND flash memories of the SSDs is seriously degraded as the scaling of memory cells. However, conventional simple reliability tests of read-disturb and data-retention cannot give the same result as the real-life VTH shift and memory cell errors. To solve this problem, the proposed reliability test precisely reproduces the real memory cell failures by emulating the complicated read, write, and data-retention with SSD emulator. In this paper, the real-life VTH shift and memory cell errors between two generations of NAND flash memory with different characterized real workloads are provided. Using the proposed test method, 1.6-times BER difference is observed when write-cold and read-hot workload (hm_1) and write-hot and read-hot workload (prxy_1) are compared in 1Ynm MLC NAND flash. In addition, by NAND flash memory scaling from 1Xnm to 1Ynm generations, the discrepancy of error numbers between the conventional reliability test result and actual reliability measured by proposed reliability test is increased by 6.3-times. Finally, guidelines for read reference voltage shifts and strength of ECCs are given to achieve high memory cell reliability for various workloads.

  • Workload-Based Co-Design of Non-Volatile Cache Algorithm and Storage Class Memory Specifications for Storage Class Memory/NAND Flash Hybrid SSDs

    Tomoaki YAMADA  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E100-C No:4
      Page(s):
    373-381

    In order to realize solid-state drives (SSDs) with high performance, low energy consumption and high reliability, storage class memory (SCM)/multi-level cell (MLC) NAND flash hybrid SSD has been proposed. Algorithm of the hybrid SSD should be designed according to SCM specifications and workload characteristics. In this paper, SCMs are used as non-volatile cache. Cache operation guidelines and optimal SCM specifications for the hybrid SSD are provided for various workload characteristics. Three kinds of non-volatile cache operation for the hybrid SSD are discussed: i) write cache, ii) read-write cache without space control (RW cache) and iii) read-write cache with space control (RW cache w/ SC). SSD workloads are categorized into eight according to read/write ratio, access frequency and access data size. From evaluation result, the write cache algorithm is suitable for write-intensive workloads and read-cold-sequential workloads, while the RW cache algorithm is suitable for read-cold-random workloads to achieve the highest performance of the hybrid SSD. In contrast, as for read-hot-random workloads, write cache is appropriate when the SCM capacity is less than 3% of the NAND flash capacity. On the other hand, RW cache should be used in case that SCM capacity is more than 5% of NAND flash capacity. The effect of Memory-type SCM (M-SCM) and Storage-type SCM (S-SCM) on the hybrid SSD performance is also analyzed. The M-SCM latency is below 1 us (high speed) but the capacity is only 2% of the NAND flash capacity (small capacity). On the other hand, the S-SCM capacity is assumed to be 5% of the NAND flash capacity (large capacity) but S-SCM speed is larger than 1 us (low speed). If the additional SCM cost is limited to 20% of MLC NAND flash cost, up to 7-times and 8-times performance improvement are achieved in write-hot-random workload and read-hot-random workloads, respectively. Moreover, if the additional SCM cost is the same as MLC NAND flash cost, M-SCM/MLC NAND flash hybrid SSD achieves 24-times performance improvement.

  • A Virtualization-Based Hybrid Storage System for a Map-Reduce Framework

    Aseffa DEREJE TEKILU  Chin-Hsien WU  

     
    PAPER-Software System

      Pubricized:
    2016/05/25
      Vol:
    E99-D No:9
      Page(s):
    2248-2258

    A map-reduce framework is popular for big data analysis. In the typical map-reduce framework, both master node and worker nodes can use hard-disk drives (HDDs) as local disks for the map-reduce computation. However, because of the inherit mechanical problems of HDDs, the I/O performance is a bottleneck for the map-reduce framework when I/O-intensive applications (e.g., sorting) are performed. Replacing HDDs with solid-state drives (SSDs) is not economical, although SSDs have better performance than HDDs. In this paper, we propose a virtualization-based hybrid storage system for the map-reduce framework. The objective of the paper is to combine the advantages of the fast access property of SSDs and the low cost of HDDs by realizing an economical design and improving I/O performance of a map-reduce framework in a virtualization environment. We propose three storage combinations: SSD-based, HDD-based, and a hybrid of SSD-based and HDD-based storage systems which balances speed, capacity, and lifetime. According to experiments, the hybrid of SSD-based and HDD-based storage systems offers superior performance and economy.

  • Variation of SCM/NAND Flash Hybrid SSD Performance, Reliability and Cost by Using Different SSD Configurations and Error Correction Strengths

    Hirofumi TAKISHITA  Shuhei TANAKAMARU  Sheyang NING  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E99-C No:4
      Page(s):
    444-451

    Storage-Class Memory (SCM) and NAND flash hybrid Solid-State Drive (SSD) has advantages of high performance and low power consumption compared with NAND flash only SSD. In this paper, first, three SSD configurations are investigated. Three different SCMs are used with 0.1 µs, 1 µs and 10 µs read/write latencies, respectively, and the required SCM/NAND flash capacity ratios are analyzed to maintain the same SSD performance. Next, by using the three SSD configurations, the variation of SSD reliability, performance and cost are analyzed by changing error correction strengths. The SSD reliability of acceptable SCM and NAND flash Bit Error Rates (BERs) is limited by achieving specified SSD performance with error correction, and/or limited by SCM and NAND flash parity size and SSD cost. Lastly, the SSD replacement cost is also analyzed by considering the limitation of NAND flash write/erase cycles. The purpose of this paper is to provide a design guideline for obtaining high performance, highly reliable and cost-effective SCM/NAND hybrid structure SSD with ECC.

  • NAND Phase Change Memory with Block Erase Architecture and Pass-Transistor Design Requirements for Write and Disturbance

    Koh JOHGUCHI  Kasuaki YOSHIOKA  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    351-359

    In this paper, we propose an optimum access method for a phase change memory (PCM) with NAND strings. A PCM with a block erase interface is proposed. The method, which has a SET block erase operation and fast RESET programming, is proposed since the SET operation causes a slow access time for conventional PCM;. From the results of measurement, the SET-ERASE operation is successfully completed while the RESET-ERASE operation is incomplete owing to serial connection. As a result, the block erase interface with the SET-ERASE and RESET program method realizes a 7.7 times faster write speed compared than a conventional RAM interface owing to the long SET time. We also give pass-transistor design guidelines for PCM with NAND strings. In addition, the write-capability and write-disturb problems are investigated. The ERASE operation for the proposed device structure can be realized with the same current as that for the SET operation of a single cell. For the pass transistor, about 4.4 times larger on-current is needed to carry out the RESET operation and to avoid the write-disturb problem than the minimum RESET current of a single cell. In this paper, the SET programming method is also verified for a conventional RAM interface. The experimental results show that the write-capability and write-disturb problems are negligible.

  • Initialize and Weak-Program Erasing Scheme for High-Performance and High-Reliability Ferroelectric NAND Flash Solid-State Drive

    Kousuke MIYAJI  Ryoji YAJIMA  Teruyoshi HATANAKA  Mitsue TAKAHASHI  Shigeki SAKAI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    609-616

    Initialize and weak-program erasing scheme is proposed to achieve high-performance and high-reliability Ferroelectric (Fe-) NAND flash solid-state drive (SSD). Bit-by-bit erase VTH control is achieved by the proposed erasing scheme and history effects in Fe-NAND is also suppressed. History effects change the future erase VTH shift characteristics by the past program voltage. The proposed erasing scheme decreases VTH shift variation due to history effects from ±40% to ±2% and the erase VTH distribution width is reduced from over 0.4 V to 0.045 V. As a result, the read and VPASS disturbance decrease by 42% and 37%, respectively. The proposed erasing scheme is immune to VTH variations and voltage stress. The proposed erasing scheme also suppresses the power and bandwidth degradation of SSD.

  • Improvement of Read Disturb, Program Disturb and Data Retention by Memory Cell VTH Optimization of Ferroelectric (Fe)-NAND Flash Memories for Highly Reliable and Low Power Enterprise Solid-State Drives (SSDs)

    Teruyoshi HATANAKA  Mitsue TAKAHASHI  Shigeki SAKAI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    539-547

    This paper presents an improvement of the memory cell reliability by the memory cell VTH optimization of the ferroelectric (Fe)-NAND flash memory. The effects of the memory cell VTH on the reliability of the Fe-NAND flash memory are experimentally analyzed for the first time. The reliability is evaluated by the measured VTH shift due to the read disturb, program disturb and data retention. Three types of Fe-NAND flash memory cells, a positive, zero and negative VTH memory cell, are defined on the basis of the memory cell VTH. The middle of VTH of programmed and erased states is 1 V, 0 V and -0.3 V in a positive, zero and negative VTH memory cell, respectively. The VTH shift of the positive, zero and negative VTH memory cells show similar characteristics in the program/erase and the VPASS and VPGM disturbs because the external electric field is so high that the internal depolarization field does not affect the VTH shift. On the other hand, in the data retention, the VTH shift of the three types of VTH memory cells show different characteristics. The reliability of the Fe-NAND flash memory is best optimized in the zero VTH memory cell. In the proposed zero VTH Fe-NAND flash memory cell scheme, the measured VTH shift due to the read disturb, program disturb and data retention decreases by 32%, 24% and 10%, respectively, compared with conventional positive VTH Fe-NAND flash memory cell scheme. Contrarily, in the negative VTH memory cell, the VTH shift during the data retention is 0.49 V and unacceptably large because of the depolarization field. The conventional positive VTH memory cell suffers from a sever read and program disturb. The measured results are drastically different from those of the conventional floating-gate NAND flash memory cell where the negative VTH memory cell is most suitable in terms of the reliability.