Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6 µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Zhangcai HUANG, Minglu JIANG, Yasuaki INOUE, "A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback" in IEICE TRANSACTIONS on Electronics,
vol. E92-C, no. 6, pp. 806-814, June 2009, doi: 10.1587/transele.E92.C.806.
Abstract: Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6 µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E92.C.806/_p
Copy
@ARTICLE{e92-c_6_806,
author={Zhangcai HUANG, Minglu JIANG, Yasuaki INOUE, },
journal={IEICE TRANSACTIONS on Electronics},
title={A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback},
year={2009},
volume={E92-C},
number={6},
pages={806-814},
abstract={Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6 µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for
keywords={},
doi={10.1587/transele.E92.C.806},
ISSN={1745-1353},
month={June},}
Copy
TY - JOUR
TI - A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback
T2 - IEICE TRANSACTIONS on Electronics
SP - 806
EP - 814
AU - Zhangcai HUANG
AU - Minglu JIANG
AU - Yasuaki INOUE
PY - 2009
DO - 10.1587/transele.E92.C.806
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E92-C
IS - 6
JA - IEICE TRANSACTIONS on Electronics
Y1 - June 2009
AB - Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6 µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for
ER -