As one of organic electroluminescent (EL) materials, we developed a method of fabricating an ink using low molecular- weight materials with a long emission lifetime for application to the inkjet method. Although the emission lifetime is usually long for low molecular-weight materials, their high manufacturing cost due to the necessity of vapor deposition is a disadvantage. We utilized the low molecular-weight material, tris-(8-hydroxyquinoline) aluminum (Alq3), and investigated its dispersibility in a solvent in which it has low solubility. In addition, we ascertained whether the material could maintain its photoluminescence characteristic under the irradiation of ultraviolet rays by investigating the emission of photoluminescence. Alq3 was crystallized into nanosize crystals, whose surface was then coated with a primary amine by the gas evaporation method. The fabricated ink contained crystals with an average size of 250nm and high dispersibility in tetradecane, in which Alq3 is insoluble. Thus, we made it possible to carry out an inkjet method with low molecular weight EL materials.
Naoaki SAKURAI
Toshiba
Hiroyasu KONDO
Toshiba Materials
Shuzi HAYASE
Kyushu Institute of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Naoaki SAKURAI, Hiroyasu KONDO, Shuzi HAYASE, "Formation of Soluble Ink Using Nanoparticles of Low Molecular EL Materials" in IEICE TRANSACTIONS on Electronics,
vol. E97-C, no. 1, pp. 85-90, January 2014, doi: 10.1587/transele.E97.C.85.
Abstract: As one of organic electroluminescent (EL) materials, we developed a method of fabricating an ink using low molecular- weight materials with a long emission lifetime for application to the inkjet method. Although the emission lifetime is usually long for low molecular-weight materials, their high manufacturing cost due to the necessity of vapor deposition is a disadvantage. We utilized the low molecular-weight material, tris-(8-hydroxyquinoline) aluminum (Alq3), and investigated its dispersibility in a solvent in which it has low solubility. In addition, we ascertained whether the material could maintain its photoluminescence characteristic under the irradiation of ultraviolet rays by investigating the emission of photoluminescence. Alq3 was crystallized into nanosize crystals, whose surface was then coated with a primary amine by the gas evaporation method. The fabricated ink contained crystals with an average size of 250nm and high dispersibility in tetradecane, in which Alq3 is insoluble. Thus, we made it possible to carry out an inkjet method with low molecular weight EL materials.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E97.C.85/_p
Copy
@ARTICLE{e97-c_1_85,
author={Naoaki SAKURAI, Hiroyasu KONDO, Shuzi HAYASE, },
journal={IEICE TRANSACTIONS on Electronics},
title={Formation of Soluble Ink Using Nanoparticles of Low Molecular EL Materials},
year={2014},
volume={E97-C},
number={1},
pages={85-90},
abstract={As one of organic electroluminescent (EL) materials, we developed a method of fabricating an ink using low molecular- weight materials with a long emission lifetime for application to the inkjet method. Although the emission lifetime is usually long for low molecular-weight materials, their high manufacturing cost due to the necessity of vapor deposition is a disadvantage. We utilized the low molecular-weight material, tris-(8-hydroxyquinoline) aluminum (Alq3), and investigated its dispersibility in a solvent in which it has low solubility. In addition, we ascertained whether the material could maintain its photoluminescence characteristic under the irradiation of ultraviolet rays by investigating the emission of photoluminescence. Alq3 was crystallized into nanosize crystals, whose surface was then coated with a primary amine by the gas evaporation method. The fabricated ink contained crystals with an average size of 250nm and high dispersibility in tetradecane, in which Alq3 is insoluble. Thus, we made it possible to carry out an inkjet method with low molecular weight EL materials.},
keywords={},
doi={10.1587/transele.E97.C.85},
ISSN={1745-1353},
month={January},}
Copy
TY - JOUR
TI - Formation of Soluble Ink Using Nanoparticles of Low Molecular EL Materials
T2 - IEICE TRANSACTIONS on Electronics
SP - 85
EP - 90
AU - Naoaki SAKURAI
AU - Hiroyasu KONDO
AU - Shuzi HAYASE
PY - 2014
DO - 10.1587/transele.E97.C.85
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E97-C
IS - 1
JA - IEICE TRANSACTIONS on Electronics
Y1 - January 2014
AB - As one of organic electroluminescent (EL) materials, we developed a method of fabricating an ink using low molecular- weight materials with a long emission lifetime for application to the inkjet method. Although the emission lifetime is usually long for low molecular-weight materials, their high manufacturing cost due to the necessity of vapor deposition is a disadvantage. We utilized the low molecular-weight material, tris-(8-hydroxyquinoline) aluminum (Alq3), and investigated its dispersibility in a solvent in which it has low solubility. In addition, we ascertained whether the material could maintain its photoluminescence characteristic under the irradiation of ultraviolet rays by investigating the emission of photoluminescence. Alq3 was crystallized into nanosize crystals, whose surface was then coated with a primary amine by the gas evaporation method. The fabricated ink contained crystals with an average size of 250nm and high dispersibility in tetradecane, in which Alq3 is insoluble. Thus, we made it possible to carry out an inkjet method with low molecular weight EL materials.
ER -