The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] particle(163hit)

1-20hit(163hit)

  • Development of Liquid-Phase Bioassay Using AC Susceptibility Measurement of Magnetic Nanoparticles Open Access

    Takako MIZOGUCHI  Akihiko KANDORI  Keiji ENPUKU  

     
    PAPER

      Pubricized:
    2023/11/21
      Vol:
    E107-C No:6
      Page(s):
    183-189

    Simple and quick tests at medical clinics have become increasingly important. Magnetic sensing techniques have been developed to detect biomarkers using magnetic nanoparticles in liquid-phase assays. We developed a biomarker assay that involves using an alternating current (AC) susceptibility measurement system that uses functional magnetic particles and magnetic sensing technology. We also developed compact biomarker measuring equipment to enable quick testing. Our assay is a one-step homogeneous assay that involves simply mixing a sample with a reagent, shortening testing time and simplifying processing. Using our compact measuring equipment, which includes anisotropic magneto resistance (AMR) sensors, we conducted high-sensitivity measurements of extremely small amounts of two biomarkers (C-reactive protein, CRP and α-Fetoprotein, AFP) used for diagnosing arteriosclerosis and malignant tumors. The results indicate that an extremely small amount of CRP and AFP could be detected within 15 min, which demonstrated the possibility of a simple and quick high-sensitivity immunoassay that involves using an AC-susceptibility measurement system.

  • Estimation of Core Size Distribution of Magnetic Nanoparticles Using High-Tc SQUID Magnetometer and Particle Swarm Optimizer-Based Inversion Technique Open Access

    Mohd Mawardi SAARI  Mohd Herwan SULAIMAN  Toshihiko KIWA  

     
    PAPER

      Pubricized:
    2023/10/25
      Vol:
    E107-C No:6
      Page(s):
    176-182

    In this work, the core size estimation technique of magnetic nanoparticles (MNPs) using the static magnetization curve obtained from a high-Tc SQUID magnetometer and a metaheuristic inversion technique based on the Particle Swarm Optimizer (PSO) algorithm is presented. The high-Tc SQUID magnetometer is constructed from a high-Tc SQUID sensor coupled by a flux transformer to sense the modulated magnetization signal from a sample. The magnetization signal is modulated by the lateral vibration of the sample on top of a planar differential detection coil of the flux transformer. A pair of primary and excitation coils are utilized to apply an excitation field parallel to the sensitive axis of the detection coil. Using the high-Tc SQUID magnetometer, the magnetization curve of a commercial MNP sample (Resovist) was measured in a logarithmic scale of the excitation field. The PSO inverse technique is then applied to the magnetization curve to construct the magnetic moment distribution. A multimodal normalized log-normal distribution was used in the minimization of the objective function of the PSO inversion technique, and a modification of the PSO search region is proposed to improve the exploration and exploitation of the PSO particles. As a result, a good agreement on the Resovist magnetic core size was obtained between the proposed technique and the non-negative least square (NNLS) inversion technique. The estimated core sizes of 8.0484 nm and 20.3018 nm agreed well with the values reported in the literature using the commercial low-Tc SQUID magnetometer with the SVD and NNLS inversion techniques. Compared to the NNLS inversion technique, the PSO inversion technique had merits in exploring an optimal core size distribution freely without being regularized by a parameter and facilitating an easy peak position determination owing to the smoothness of the constructed distribution. The combination of the high-Tc SQUID magnetometer and the PSO-based reconstruction technique offers a powerful approach for characterizing the MNP core size distribution, and further improvements can be expected from the recent state-of-the-art optimization algorithm to optimize further the computation time and the best objective function value.

  • Signal Detection for OTFS System Based on Improved Particle Swarm Optimization

    Jurong BAI  Lin LAN  Zhaoyang SONG  Huimin DU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/02/16
      Vol:
    E106-B No:8
      Page(s):
    614-621

    The orthogonal time frequency space (OTFS) technique proposed in recent years has excellent anti-Doppler frequency shift and time delay performance, enabling its application in high speed communication scenarios. In this article, a particle swarm optimization (PSO) signal detection algorithm for OTFS system is proposed, an adaptive mechanism for the individual learning factor and global learning factor in the speed formula of the algorithm is designed, and the position update method of the particles is improved, so as to increase the convergence accuracy and avoid the particles to fall into local optimum. The simulation results show that the improved PSO algorithm has the advantages of low bit error rate (BER) and high convergence accuracy compared with the traditional PSO algorithm, and has similar performance to the ideal state maximum likelihood (ML) detection algorithm with lower complexity. In the case of high Doppler shift, OTFS technology has better performance than orthogonal frequency division multiplexing (OFDM) technology by using improved PSO algorithm.

  • Access Point Selection Algorithm Based on Coevolution Particle Swarm in Cell-Free Massive MIMO Systems

    Hengzhong ZHI  Haibin WAN  Tuanfa QIN  Zhengqiang WANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/01/13
      Vol:
    E106-B No:7
      Page(s):
    578-585

    In this paper, we investigate the Access Point (AP) selection problem in Cell-Free Massive multiple-input multiple-output (MIMO) system. Firstly, we add a connecting coefficient to the uplink data transmission model. Then, the problem of AP selection is formulated as a discrete combinatorial optimization problem which can be dealt with by the particle swarm algorithm. However, when the number of optimization variables is large, the search efficiency of the traditional particle swarm algorithm will be significantly reduced. Then, we propose an ‘user-centric’ cooperative coevolution scheme which includes the proposed probability-based particle evolution strategy and random-sampling-based particle evaluation mechanism to deal with the search efficiency problem. Simulation results show that proposed algorithm has better performance than other existing algorithms.

  • Effect of the State of Catalytic Nanoparticles on the Growth of Vertically Aligned Carbon Nanotubes

    Shohei SAKURAI  Mayu IIDA  Kosei OKUNUKI  Masahito KUSHIDA  

     
    PAPER

      Pubricized:
    2023/01/13
      Vol:
    E106-C No:6
      Page(s):
    208-213

    In this study, vertically aligned carbon nanotubes (VA-CNTs) were grown from filler-added LB films with accumulated AlFe2O4 nanoparticles and palmitic acid (C16) as the filler molecule after different hydrogen reduction temperatures of 500°C and 750°C, and the grown VA-CNTs were compared and evaluated. As a result, VA-CNTs were approximately doubled in length after 500°C hydrogen reduction compared to 750°C hydrogen reduction when AlFe2O4 NPs were used. On the other hand, when the catalyst area ratio was decreased by using palmitic acid, i.e., the distance between CNTs was increased, VA-CNTs rapidly shortened after 500°C hydrogen reduction, and VA-CNTs were no longer obtained even in the range where VA-CNTs were obtained in 750°C hydrogen reduction. The inner and outer diameters of VA-CNTs decreased with decreasing catalyst area ratio at 750°C hydrogen reduction and tended to increase at 500°C hydrogen reduction. The morphology of the catalyst nanoparticles after CVD was observed to change significantly depending on the hydrogen reduction temperature and catalyst area ratio. These observations indicate that the state of the catalyst nanoparticles immediately before the CNT growth process greatly affects the physical properties of the CNTs.

  • An Interpretable Feature Selection Based on Particle Swarm Optimization

    Yi LIU  Wei QIN  Qibin ZHENG  Gensong LI  Mengmeng LI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2022/05/09
      Vol:
    E105-D No:8
      Page(s):
    1495-1500

    Feature selection based on particle swarm optimization is often employed for promoting the performance of artificial intelligence algorithms. However, its interpretability has been lacking of concrete research. Improving the stability of the feature selection method is a way to effectively improve its interpretability. A novel feature selection approach named Interpretable Particle Swarm Optimization is developed in this paper. It uses four data perturbation ways and three filter feature selection methods to obtain stable feature subsets, and adopts Fuch map to convert them to initial particles. Besides, it employs similarity mutation strategy, which applies Tanimoto distance to choose the nearest 1/3 individuals to the previous particles to implement mutation. Eleven representative algorithms and four typical datasets are taken to make a comprehensive comparison with our proposed approach. Accuracy, F1, precision and recall rate indicators are used as classification measures, and extension of Kuncheva indicator is employed as the stability measure. Experiments show that our method has a better interpretability than the compared evolutionary algorithms. Furthermore, the results of classification measures demonstrate that the proposed approach has an excellent comprehensive classification performance.

  • Particle Filter Design Based on Reinforcement Learning and Its Application to Mobile Robot Localization

    Ryota YOSHIMURA  Ichiro MARUTA  Kenji FUJIMOTO  Ken SATO  Yusuke KOBAYASHI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/01/28
      Vol:
    E105-D No:5
      Page(s):
    1010-1023

    Particle filters have been widely used for state estimation problems in nonlinear and non-Gaussian systems. Their performance depends on the given system and measurement models, which need to be designed by the user for each target system. This paper proposes a novel method to design these models for a particle filter. This is a numerical optimization method, where the particle filter design process is interpreted into the framework of reinforcement learning by assigning the randomnesses included in both models of the particle filter to the policy of reinforcement learning. In this method, estimation by the particle filter is repeatedly performed and the parameters that determine both models are gradually updated according to the estimation results. The advantage is that it can optimize various objective functions, such as the estimation accuracy of the particle filter, the variance of the particles, the likelihood of the parameters, and the regularization term of the parameters. We derive the conditions to guarantee that the optimization calculation converges with probability 1. Furthermore, in order to show that the proposed method can be applied to practical-scale problems, we design the particle filter for mobile robot localization, which is an essential technology for autonomous navigation. By numerical simulations, it is demonstrated that the proposed method further improves the localization accuracy compared to the conventional method.

  • Global Optimization Algorithm for Cloud Service Composition

    Hongwei YANG  Fucheng XUE  Dan LIU  Li LI  Jiahui FENG  

     
    PAPER-Computer System

      Pubricized:
    2021/06/30
      Vol:
    E104-D No:10
      Page(s):
    1580-1591

    Service composition optimization is a classic NP-hard problem. How to quickly select high-quality services that meet user needs from a large number of candidate services is a hot topic in cloud service composition research. An efficient second-order beetle swarm optimization is proposed with a global search ability to solve the problem of cloud service composition optimization in this study. First, the beetle antennae search algorithm is introduced into the modified particle swarm optimization algorithm, initialize the population bying using a chaotic sequence, and the modified nonlinear dynamic trigonometric learning factors are adopted to control the expanding capacity of particles and global convergence capability. Second, modified secondary oscillation factors are incorporated, increasing the search precision of the algorithm and global searching ability. An adaptive step adjustment is utilized to improve the stability of the algorithm. Experimental results founded on a real data set indicated that the proposed global optimization algorithm can solve web service composition optimization problems in a cloud environment. It exhibits excellent global searching ability, has comparatively fast convergence speed, favorable stability, and requires less time cost.

  • Preparation Copper Sulfide Nanoparticles by Laser Ablation in Liquid and Optical Properties

    Kazuki ISODA  Ryuga YANAGIHARA  Yoshitaka KITAMOTO  Masahiko HARA  Hiroyuki WADA  

     
    BRIEF PAPER-Ultrasonic Electronics

      Pubricized:
    2021/02/08
      Vol:
    E104-C No:8
      Page(s):
    390-393

    Copper sulfide nanoparticles were successfully prepared by laser ablation in liquid. CuS powders in deionized water were irradiated with nanosecond-pulsed laser (Nd:YAG, SHG) to prepare nanoparticles. Prepared nanoparticles were investigated by scanning electron microscopy (SEM), dynamic light scattering (DLS) and fluorospectrometer. According to the results of SEM and DLS, the primary and secondary particle size was decreased with the increase in laser fluence of laser ablation in liquid. The ratio of Cu and S of prepared nanoparticles were not changed. The absorbance of prepared copper sulfide nanoparticles in water was increased with the increase in laser fluence.

  • Distributed UAVs Placement Optimization for Cooperative Communication

    Zhaoyang HOU  Zheng XIANG  Peng REN  Qiang HE  Ling ZHENG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/08
      Vol:
    E104-B No:6
      Page(s):
    675-685

    In this paper, the distributed cooperative communication of unmanned aerial vehicles (UAVs) is studied, where the condition number (CN) and the inner product (InP) are used to measure the quality of communication links. By optimizing the relative position of UAVs, large channel capacity and stable communication links can be obtained. Using the spherical wave model under the line of sight (LOS) channel, CN expression of the channel matrix is derived when there are Nt transmitters and two receivers in the system. In order to maximize channel capacity, we derive the UAVs position constraint equation (UAVs-PCE), and the constraint between BS elements distance and carrier wavelength is analyzed. The result shows there is an area where no matter how the UAVs' positions are adjusted, the CN is still very large. Then a special scenario is considered where UAVs form a rectangular lattice array, and the optimal constraint between communication distance and UAVs distance is derived. After that, we derive the InP of channel matrix and the gradient expression of InP with respect to UAVs' position. The particle swarm optimization (PSO) algorithm is used to minimize the CN and the gradient descent (GD) algorithm is used to minimize the InP by optimizing UAVs' position iteratively. Both of the two algorithms present great potentials for optimizing the CN and InP respectively. Furthermore, a hybrid algorithm named PSO-GD combining the advantage of the two algorithms is proposed to maximize the communication capacity with lower complexity. Simulations show that PSO-GD is more efficient than PSO and GD. PSO helps GD to break away from local extremum and provides better positions for GD, and GD can converge to an optimal solution quickly by using the gradient information based on the better positions. Simulations also reveal that a better channel can be obtained when those parameters satisfy the UAVs position constraint equation (UAVs-PCE), meanwhile, theory analysis also explains the abnormal phenomena in simulations.

  • Retinex-Based Image Enhancement with Particle Swarm Optimization and Multi-Objective Function

    Farzin MATIN  Yoosoo JEONG  Hanhoon PARK  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2020/09/15
      Vol:
    E103-D No:12
      Page(s):
    2721-2724

    Multiscale retinex is one of the most popular image enhancement methods. However, its control parameters, such as Gaussian kernel sizes, gain, and offset, should be tuned carefully according to the image contents. In this letter, we propose a new method that optimizes the parameters using practical swarm optimization and multi-objective function. The method iteratively verifies the visual quality (i.e. brightness, contrast, and colorfulness) of the enhanced image using a multi-objective function while subtly adjusting the parameters. Experimental results shows that the proposed method achieves better image quality qualitatively and quantitatively compared with other image enhancement methods.

  • Survivable Virtual Network Topology Protection Method Based on Particle Swarm Optimization

    Guangyuan LIU  Daokun CHEN  

     
    LETTER-Information Network

      Pubricized:
    2020/03/04
      Vol:
    E103-D No:6
      Page(s):
    1414-1418

    Survivable virtual network embedding (SVNE) is one of major challenges of network virtualization. In order to improve the utilization rate of the substrate network (SN) resources with virtual network (VN) topology connectivity guarantee under link failure in SN, we first establishes an Integer Linear Programming (ILP) model for that under SN supports path splitting. Then we designs a novel survivable VN topology protection method based on particle swarm optimization (VNE-PSO), which redefines the parameters and related operations of particles with the embedding overhead as the fitness function. Simulation results show that the solution significantly improves the long-term average revenue of the SN, the acceptance rate of VN requests, and reduces the embedding time compared with the existing research results.

  • Analysis and Investigation of Frame Invariance and Particle Behavior for Piecewise-Linear Particle Swarm Optimizer

    Tomoyuki SASAKI  Hidehiro NAKANO  

     
    PAPER-Nonlinear Problems

      Vol:
    E102-A No:12
      Page(s):
    1956-1967

    Particle swarm optimization (PSO) is a swarm intelligence algorithm and has good search performance and simplicity in implementation. Because of its properties, PSO has been applied to various optimization problems. However, the search performance of the classical PSO (CPSO) depends on reference frame of solution spaces for each objective function. CPSO is an invariant algorithm through translation and scale changes to reference frame of solution spaces but is a rotationally variant algorithm. As such, the search performance of CPSO is worse in solving rotated problems than in solving non-rotated problems. In the reference frame invariance, the search performance of an optimization algorithm is independent on rotation, translation, or scale changes to reference frame of solution spaces, which is a property of preferred optimization algorithms. In our previous study, piecewise-linear particle swarm optimizer (PPSO) has been proposed, which is effective in solving rotated problems. Because PPSO particles can move in solution spaces freely without depending on the coordinate systems, PPSO algorithm may have rotational invariance. However, theoretical analysis of reference frame invariance of PPSO has not been done. In addition, although behavior of each particle depends on PPSO parameters, good parameter conditions in solving various optimization problems have not been sufficiently clarified. In this paper, we analyze the reference frame invariance of PPSO theoretically, and investigated whether or not PPSO is invariant under reference frame alteration. We clarify that control parameters of PPSO which affect movement of each particle and performance of PPSO through numerical simulations.

  • Representative Spatial Selection and Temporal Combination for 60fps Real-Time 3D Tracking of Twelve Volleyball Players on GPU

    Xina CHENG  Yiming ZHAO  Takeshi IKENAGA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1882-1890

    Real-time 3D players tracking plays an important role in sports analysis, especially for the live services of sports broadcasting, which have a strict limitation on processing time. For these kinds of applications, 3D trajectories of players contribute to high-level game analysis such as tactic analysis and commercial applications such as TV contents. Thus real-time implementation for 3D players tracking is expected. In order to achieve real-time for 60fps videos with high accuracy, (that means the processing time should be less than 16.67ms per frame), the factors that limit the processing time of target algorithm include: 1) Large image area of each player. 2) Repeated processing of multiple players in multiple views. 3) Complex calculation of observation algorithm. To deal with the above challenges, this paper proposes a representative spatial selection and temporal combination based real-time implementation for multi-view volleyball players tracking on the GPU device. First, the representative spatial pixel selection, which detects the pixels that mostly represent one image region to scale down the image spatially, reduces the number of processing pixels. Second, the representative temporal likelihood combination shares observation calculation by using the temporal correlation between images so that the times of complex calculation is reduced. The experiments are based on videos of the Final and Semi-Final Game of 2014 Japan Inter High School Games of Men's Volleyball in Tokyo Metropolitan Gymnasium. On the GPU device GeForce GTX 1080Ti, the tracking system achieves real-time on 60fps videos and keeps the tracking accuracy higher than 97%.

  • Hardware-Based Principal Component Analysis for Hybrid Neural Network Trained by Particle Swarm Optimization on a Chip

    Tuan Linh DANG  Yukinobu HOSHINO  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E102-A No:10
      Page(s):
    1374-1382

    This paper presents a hybrid architecture for a neural network (NN) trained by a particle swarm optimization (PSO) algorithm. The NN is implemented on the hardware side while the PSO is executed by a processor on the software side. In addition, principal component analysis (PCA) is also applied to reduce correlated information. The PCA module is implemented in hardware by the SystemVerilog programming language to increase operating speed. Experimental results showed that the proposed architecture had been successfully implemented. In addition, the hardware-based NN trained by PSO (NN-PSO) program was faster than the software-based NN trained by the PSO program. The proposed NN-PSO with PCA also obtained better recognition rates than the NN-PSO without-PCA.

  • A Robust Tracking with Low-Dimensional Target-Specific Feature Extraction Open Access

    Chengcheng JIANG  Xinyu ZHU  Chao LI  Gengsheng CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/04/19
      Vol:
    E102-D No:7
      Page(s):
    1349-1361

    Pre-trained CNNs on ImageNet have been widely used in object tracking for feature extraction. However, due to the domain mismatch between image classification and object tracking, the submergence of the target-specific features by noise largely decreases the expression ability of the convolutional features, resulting in an inefficient tracking. In this paper, we propose a robust tracking algorithm with low-dimensional target-specific feature extraction. First, a novel cascaded PCA module is proposed to have an explicit extraction of the low-dimensional target-specific features, which makes the new appearance model more effective and efficient. Next, a fast particle filter process is raised to further accelerate the whole tracking pipeline by sharing convolutional computation with a ROI-Align layer. Moreover, a classification-score guided scheme is used to update the appearance model for adapting to target variations while at the same time avoiding the model drift that caused by the object occlusion. Experimental results on OTB100 and Temple Color128 show that, the proposed algorithm has achieved a superior performance among real-time trackers. Besides, our algorithm is competitive with the state-of-the-art trackers in precision while runs at a real-time speed.

  • An Optimized Level Set Method Based on QPSO and Fuzzy Clustering

    Ling YANG  Yuanqi FU  Zhongke WANG  Xiaoqiong ZHEN  Zhipeng YANG  Xingang FAN  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/02/12
      Vol:
    E102-D No:5
      Page(s):
    1065-1072

    A new fuzzy level set method (FLSM) based on the global search capability of quantum particle swarm optimization (QPSO) is proposed to improve the stability and precision of image segmentation, and reduce the sensitivity of initialization. The new combination of QPSO-FLSM algorithm iteratively optimizes initial contours using the QPSO method and fuzzy c-means clustering, and then utilizes level set method (LSM) to segment images. The new algorithm exploits the global search capability of QPSO to obtain a stable cluster center and a pre-segmentation contour closer to the region of interest during the iteration. In the implementation of the new method in segmenting liver tumors, brain tissues, and lightning images, the fitness function of the objective function of QPSO-FLSM algorithm is optimized by 10% in comparison to the original FLSM algorithm. The achieved initial contours from the QPSO-FLSM algorithm are also more stable than that from the FLSM. The QPSO-FLSM resulted in improved final image segmentation.

  • BMM: A Binary Metaheuristic Mapping Algorithm for Mesh-Based Network-on-Chip

    Xilu WANG  Yongjun SUN  Huaxi GU  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2018/11/26
      Vol:
    E102-D No:3
      Page(s):
    628-631

    The mapping optimization problem in Network-on-Chip (NoC) is constraint and NP-hard, and the deterministic algorithms require considerable computation time to find an exact optimal mapping solution. Therefore, the metaheuristic algorithms (MAs) have attracted great interests of researchers. However, most MAs are designed for continuous problems and suffer from premature convergence. In this letter, a binary metaheuristic mapping algorithm (BMM) with a better exploration-exploitation balance is proposed to solve the mapping problem. The binary encoding is used to extend the MAs to the constraint problem and an adaptive strategy is introduced to combine Sine Cosine Algorithm (SCA) and Particle Swarm Algorithm (PSO). SCA is modified to explore the search space effectively, while the powerful exploitation ability of PSO is employed for the global optimum. A set of well-known applications and large-scale synthetic cores-graphs are used to test the performance of BMM. The results demonstrate that the proposed algorithm can improve the energy consumption more significantly than some other heuristic algorithms.

  • Application of Gold Powder Made from Gold Leaf for Conductive Inks

    Sayaka YAMASHITA  Heisuke SAKAI  Hideyuki MURATA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    176-179

    In this work, gold powder made from gold leaf investigated to have the potential as a filler of conductive ink. The resistance of a conductive film decreased from 6.2kΩ to 1 Ω by adding only 2.0wt% of gold powder to conductive polymer (PEDOT:PSS) ink. The change of the resistance depends on the characteristics of gold powder. Gold powder with smaller and uniform sizes and good dispersibility is beneficial to form a continuous percolation network.

  • Emission Enhancement of Water-Soluble Porphyrin Immobilized in DNA Ultrathin Films by Localized Surface Plasmon Resonance of Gold Nanoparticles

    Hiroya MORITA  Hideki KAWAI  Kenji TAKEHARA  Naoki MATSUDA  Toshihiko NAGAMURA  

     
    PAPER

      Vol:
    E102-C No:2
      Page(s):
    100-106

    Photophysical properties of water-soluble porphyrin were studied in aqueous solutions with/without DNA and in DNA solid films. Ultrathin films were prepared from aqueous DNA solutions by a spin-coating method on glass or on gold nanoparticles (AuNPs). Remarkable enhancement of phosphorescence was observed for porphyrin immobilized in DNA films spin-coated on AuNPs, which was attributed to the electric field enhancement and the increased radiative rate by localized surface plasmon resonance of AuNPs.

1-20hit(163hit)