The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

A Parallel Collision Resolution Algorithm for Mobile Systems

Shigeru SHIMAMOTO, Noriaki HAGIYA, Jaidev KANIYIL, Yoshikuni ONOZATO

  • Full Text Views

    0

  • Cite this

Summary :

For the connection request procedure in mobile communication systems, a previous study had shown that the 3-channel systems provide the haighest maximum of stable per channel throughput. In this paper, we propose and study a new algorithm, called the Parallel Collision Resolution Algorithm, which can be implemented in a Q-channel connection request environment, where Q3. For the implementation, the channels are arranged in R groups, where R is a positive integer. The collision resolution scheme distributes the collided messages over all the groups so that throughput and delay measures can be improved. At any point in time, there can be a maximum of R collision resolution schemes operational irrespective of the channel or the group number over which collisions occurred. The performance measures are estimated by computer simulation. Under the new algorithm, almost the same level of the perchannel stable throughput measure of a 3-channel network can be achieved in networks for which Q3. This feature allows freedom to the network designer to employ a higher number of connection request channels without forfeiting high channel utilization rates. When Q is an integral multiple of 3, the maximum stable per channel throughput level achieved can be the same as that achieved by the 3 channel system, if the grouping of channels is such that each group consists of 3 channels. When Q is not an integral multiple of 3, the intuitive strategy of organizing the channels in such a way that Q/3 groups consist of 3 channels each and one group consists of (Q mod 3) channels, may result in much degraded performance. It is found that, if the channels are so organised that no group is composed of (Q mod 3) channels, the performance levels can be substantially enhanced. Also, under the new algorithm, the delay measure is significantly improved, particularly in schemes like the mobile satellite systems with high propagation delays. We conclude that the new scheme presents a promising collision resolution methodology for connection request procedures.

Publication
IEICE TRANSACTIONS on Fundamentals Vol.E75-A No.12 pp.1710-1719
Publication Date
1992/12/25
Publicized
Online ISSN
DOI
Type of Manuscript
Special Section PAPER (Special Section on Networks and Mobile Communications)
Category

Authors

Keyword