This paper describes a design of a Carry Propagation Free Adder/Subtracter (CPFA/S) VLSI using the Adiabatic Dynamic CMOS Logic (ADCL) circuit technology. Using a PSPICE simulator, energy dissipation of the ADCL 1 bit CPFA/S is compared with that of the CMOS 1 bit CPFA/S. As a result, energy dissipation of the proposed ADCL circuits is about 1/3 as high as that of the CMOS circuits. The transistors count, propagation-delay time and energy dissipation of the ADCL 4 bit CPFA/S are compared with those of the ADCL 4 bit Ripple Carry Adder/Subtracter (RCA/S). The transistors count and propagation-delay time are found to be reduced by 7.02% and 57.1%, respectively. Also, energy dissipation is found to be reduced by 78.4%. Circuit operation and performance are evaluated using a chain of the ADCL 1 bit CPFA/S fabricated in a 1.2 µm CMOS process. The experimental results show that addition and subtraction are operated with clock frequencies up to about 1 MHz. In addition, the total power dissipation of the ADCL 1 bit CPFA/S is 28.7 µW including the power supply.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yasuhiro TAKAHASHI, Kei-ichi KONTA, Kazukiyo TAKAHASHI, Michio YOKOYAMA, Kazuhiro SHOUNO, Mitsuru MIZUNUMA, "Carry Propagation Free Adder/Subtracter Using Adiabatic Dynamic CMOS Logic Circuit Technology" in IEICE TRANSACTIONS on Fundamentals,
vol. E86-A, no. 6, pp. 1437-1444, June 2003, doi: .
Abstract: This paper describes a design of a Carry Propagation Free Adder/Subtracter (CPFA/S) VLSI using the Adiabatic Dynamic CMOS Logic (ADCL) circuit technology. Using a PSPICE simulator, energy dissipation of the ADCL 1 bit CPFA/S is compared with that of the CMOS 1 bit CPFA/S. As a result, energy dissipation of the proposed ADCL circuits is about 1/3 as high as that of the CMOS circuits. The transistors count, propagation-delay time and energy dissipation of the ADCL 4 bit CPFA/S are compared with those of the ADCL 4 bit Ripple Carry Adder/Subtracter (RCA/S). The transistors count and propagation-delay time are found to be reduced by 7.02% and 57.1%, respectively. Also, energy dissipation is found to be reduced by 78.4%. Circuit operation and performance are evaluated using a chain of the ADCL 1 bit CPFA/S fabricated in a 1.2 µm CMOS process. The experimental results show that addition and subtraction are operated with clock frequencies up to about 1 MHz. In addition, the total power dissipation of the ADCL 1 bit CPFA/S is 28.7 µW including the power supply.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e86-a_6_1437/_p
Copy
@ARTICLE{e86-a_6_1437,
author={Yasuhiro TAKAHASHI, Kei-ichi KONTA, Kazukiyo TAKAHASHI, Michio YOKOYAMA, Kazuhiro SHOUNO, Mitsuru MIZUNUMA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Carry Propagation Free Adder/Subtracter Using Adiabatic Dynamic CMOS Logic Circuit Technology},
year={2003},
volume={E86-A},
number={6},
pages={1437-1444},
abstract={This paper describes a design of a Carry Propagation Free Adder/Subtracter (CPFA/S) VLSI using the Adiabatic Dynamic CMOS Logic (ADCL) circuit technology. Using a PSPICE simulator, energy dissipation of the ADCL 1 bit CPFA/S is compared with that of the CMOS 1 bit CPFA/S. As a result, energy dissipation of the proposed ADCL circuits is about 1/3 as high as that of the CMOS circuits. The transistors count, propagation-delay time and energy dissipation of the ADCL 4 bit CPFA/S are compared with those of the ADCL 4 bit Ripple Carry Adder/Subtracter (RCA/S). The transistors count and propagation-delay time are found to be reduced by 7.02% and 57.1%, respectively. Also, energy dissipation is found to be reduced by 78.4%. Circuit operation and performance are evaluated using a chain of the ADCL 1 bit CPFA/S fabricated in a 1.2 µm CMOS process. The experimental results show that addition and subtraction are operated with clock frequencies up to about 1 MHz. In addition, the total power dissipation of the ADCL 1 bit CPFA/S is 28.7 µW including the power supply.},
keywords={},
doi={},
ISSN={},
month={June},}
Copy
TY - JOUR
TI - Carry Propagation Free Adder/Subtracter Using Adiabatic Dynamic CMOS Logic Circuit Technology
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1437
EP - 1444
AU - Yasuhiro TAKAHASHI
AU - Kei-ichi KONTA
AU - Kazukiyo TAKAHASHI
AU - Michio YOKOYAMA
AU - Kazuhiro SHOUNO
AU - Mitsuru MIZUNUMA
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E86-A
IS - 6
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - June 2003
AB - This paper describes a design of a Carry Propagation Free Adder/Subtracter (CPFA/S) VLSI using the Adiabatic Dynamic CMOS Logic (ADCL) circuit technology. Using a PSPICE simulator, energy dissipation of the ADCL 1 bit CPFA/S is compared with that of the CMOS 1 bit CPFA/S. As a result, energy dissipation of the proposed ADCL circuits is about 1/3 as high as that of the CMOS circuits. The transistors count, propagation-delay time and energy dissipation of the ADCL 4 bit CPFA/S are compared with those of the ADCL 4 bit Ripple Carry Adder/Subtracter (RCA/S). The transistors count and propagation-delay time are found to be reduced by 7.02% and 57.1%, respectively. Also, energy dissipation is found to be reduced by 78.4%. Circuit operation and performance are evaluated using a chain of the ADCL 1 bit CPFA/S fabricated in a 1.2 µm CMOS process. The experimental results show that addition and subtraction are operated with clock frequencies up to about 1 MHz. In addition, the total power dissipation of the ADCL 1 bit CPFA/S is 28.7 µW including the power supply.
ER -