Full Text Views
136
The hardness in solving the shortest vector problem (SVP) is a fundamental assumption for the security of lattice-based cryptographic algorithms. In 2010, Micciancio and Voulgaris proposed an algorithm named the Gauss Sieve, which is a fast and heuristic algorithm for solving the SVP. Schneider presented another algorithm named the Ideal Gauss Sieve in 2011, which is applicable to a special class of lattices, called ideal lattices. The Ideal Gauss Sieve speeds up the Gauss Sieve by using some properties of the ideal lattices. However, the algorithm is applicable only if the dimension of the ideal lattice n is a power of two or n+1 is a prime. Ishiguro et al. proposed an extension to the Ideal Gauss Sieve algorithm in 2014, which is applicable only if the prime factor of n is 2 or 3. In this paper, we first generalize the dimensions that can be applied to the ideal lattice properties to when the prime factor of n is derived from 2, p or q for two primes p and q. To the best of our knowledge, no algorithm using ideal lattice properties has been proposed so far with dimensions such as: 20, 44, 80, 84, and 92. Then we present an algorithm that speeds up the Gauss Sieve for these dimensions. Our experiments show that our proposed algorithm is 10 times faster than the original Gauss Sieve in solving an 80-dimensional SVP problem. Moreover, we propose a rotation-based Gauss Sieve that is approximately 1.5 times faster than the Ideal Gauss Sieve.
Shintaro NARISADA
KDDI Research, Inc.
Hiroki OKADA
KDDI Research, Inc.
Kazuhide FUKUSHIMA
KDDI Research, Inc.
Shinsaku KIYOMOTO
KDDI Research, Inc.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Shintaro NARISADA, Hiroki OKADA, Kazuhide FUKUSHIMA, Shinsaku KIYOMOTO, "Faster Rotation-Based Gauss Sieve for Solving the SVP on General Ideal Lattices" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 1, pp. 79-88, January 2021, doi: 10.1587/transfun.2020CIP0014.
Abstract: The hardness in solving the shortest vector problem (SVP) is a fundamental assumption for the security of lattice-based cryptographic algorithms. In 2010, Micciancio and Voulgaris proposed an algorithm named the Gauss Sieve, which is a fast and heuristic algorithm for solving the SVP. Schneider presented another algorithm named the Ideal Gauss Sieve in 2011, which is applicable to a special class of lattices, called ideal lattices. The Ideal Gauss Sieve speeds up the Gauss Sieve by using some properties of the ideal lattices. However, the algorithm is applicable only if the dimension of the ideal lattice n is a power of two or n+1 is a prime. Ishiguro et al. proposed an extension to the Ideal Gauss Sieve algorithm in 2014, which is applicable only if the prime factor of n is 2 or 3. In this paper, we first generalize the dimensions that can be applied to the ideal lattice properties to when the prime factor of n is derived from 2, p or q for two primes p and q. To the best of our knowledge, no algorithm using ideal lattice properties has been proposed so far with dimensions such as: 20, 44, 80, 84, and 92. Then we present an algorithm that speeds up the Gauss Sieve for these dimensions. Our experiments show that our proposed algorithm is 10 times faster than the original Gauss Sieve in solving an 80-dimensional SVP problem. Moreover, we propose a rotation-based Gauss Sieve that is approximately 1.5 times faster than the Ideal Gauss Sieve.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020CIP0014/_p
Copy
@ARTICLE{e104-a_1_79,
author={Shintaro NARISADA, Hiroki OKADA, Kazuhide FUKUSHIMA, Shinsaku KIYOMOTO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Faster Rotation-Based Gauss Sieve for Solving the SVP on General Ideal Lattices},
year={2021},
volume={E104-A},
number={1},
pages={79-88},
abstract={The hardness in solving the shortest vector problem (SVP) is a fundamental assumption for the security of lattice-based cryptographic algorithms. In 2010, Micciancio and Voulgaris proposed an algorithm named the Gauss Sieve, which is a fast and heuristic algorithm for solving the SVP. Schneider presented another algorithm named the Ideal Gauss Sieve in 2011, which is applicable to a special class of lattices, called ideal lattices. The Ideal Gauss Sieve speeds up the Gauss Sieve by using some properties of the ideal lattices. However, the algorithm is applicable only if the dimension of the ideal lattice n is a power of two or n+1 is a prime. Ishiguro et al. proposed an extension to the Ideal Gauss Sieve algorithm in 2014, which is applicable only if the prime factor of n is 2 or 3. In this paper, we first generalize the dimensions that can be applied to the ideal lattice properties to when the prime factor of n is derived from 2, p or q for two primes p and q. To the best of our knowledge, no algorithm using ideal lattice properties has been proposed so far with dimensions such as: 20, 44, 80, 84, and 92. Then we present an algorithm that speeds up the Gauss Sieve for these dimensions. Our experiments show that our proposed algorithm is 10 times faster than the original Gauss Sieve in solving an 80-dimensional SVP problem. Moreover, we propose a rotation-based Gauss Sieve that is approximately 1.5 times faster than the Ideal Gauss Sieve.},
keywords={},
doi={10.1587/transfun.2020CIP0014},
ISSN={1745-1337},
month={January},}
Copy
TY - JOUR
TI - Faster Rotation-Based Gauss Sieve for Solving the SVP on General Ideal Lattices
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 79
EP - 88
AU - Shintaro NARISADA
AU - Hiroki OKADA
AU - Kazuhide FUKUSHIMA
AU - Shinsaku KIYOMOTO
PY - 2021
DO - 10.1587/transfun.2020CIP0014
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2021
AB - The hardness in solving the shortest vector problem (SVP) is a fundamental assumption for the security of lattice-based cryptographic algorithms. In 2010, Micciancio and Voulgaris proposed an algorithm named the Gauss Sieve, which is a fast and heuristic algorithm for solving the SVP. Schneider presented another algorithm named the Ideal Gauss Sieve in 2011, which is applicable to a special class of lattices, called ideal lattices. The Ideal Gauss Sieve speeds up the Gauss Sieve by using some properties of the ideal lattices. However, the algorithm is applicable only if the dimension of the ideal lattice n is a power of two or n+1 is a prime. Ishiguro et al. proposed an extension to the Ideal Gauss Sieve algorithm in 2014, which is applicable only if the prime factor of n is 2 or 3. In this paper, we first generalize the dimensions that can be applied to the ideal lattice properties to when the prime factor of n is derived from 2, p or q for two primes p and q. To the best of our knowledge, no algorithm using ideal lattice properties has been proposed so far with dimensions such as: 20, 44, 80, 84, and 92. Then we present an algorithm that speeds up the Gauss Sieve for these dimensions. Our experiments show that our proposed algorithm is 10 times faster than the original Gauss Sieve in solving an 80-dimensional SVP problem. Moreover, we propose a rotation-based Gauss Sieve that is approximately 1.5 times faster than the Ideal Gauss Sieve.
ER -