The search functionality is under construction.

Author Search Result

[Author] Hiroki OKADA(4hit)

1-4hit
  • A Failsoft Scheme for Mobile Live Streaming by Scalable Video Coding

    Hiroki OKADA  Masato YOSHIMI  Celimuge WU  Tsutomu YOSHINAGA  

     
    PAPER

      Pubricized:
    2021/09/08
      Vol:
    E104-D No:12
      Page(s):
    2121-2130

    In this study, we propose a mechanism called adaptive failsoft control to address peak traffic in mobile live streaming, using a chasing playback function. Although a cache system is avaliable to support the chasing playback function for live streaming in a base station and device-to-device communication, the request concentration by highlight scenes influences the traffic load owing to data unavailability. To avoid data unavailability, we adapted two live streaming features: (1) streaming data while switching the video quality, and (2) time variability of the number of requests. The second feature enables a fallback mechanism for the cache system by prioritizing cache eviction and terminating the transfer of cache-missed requests. This paper discusses the simulation results of the proposed mechanism, which adopts a request model appropriate for (a) avoiding peak traffic and (b) maintaining continuity of service.

  • A Compact Digital Signature Scheme Based on the Module-LWR Problem Open Access

    Hiroki OKADA  Atsushi TAKAYASU  Kazuhide FUKUSHIMA  Shinsaku KIYOMOTO  Tsuyoshi TAKAGI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/03/19
      Vol:
    E104-A No:9
      Page(s):
    1219-1234

    We propose a new lattice-based digital signature scheme MLWRSign by modifying Dilithium, which is one of the second-round candidates of NIST's call for post-quantum cryptographic standards. To the best of our knowledge, our scheme MLWRSign is the first signature scheme whose security is based on the (module) learning with rounding (LWR) problem. Due to the simplicity of the LWR, the secret key size is reduced by approximately 30% in our scheme compared to Dilithium, while achieving the same level of security. Moreover, we implemented MLWRSign and observed that the running time of our scheme is comparable to that of Dilithium.

  • Faster Rotation-Based Gauss Sieve for Solving the SVP on General Ideal Lattices Open Access

    Shintaro NARISADA  Hiroki OKADA  Kazuhide FUKUSHIMA  Shinsaku KIYOMOTO  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    79-88

    The hardness in solving the shortest vector problem (SVP) is a fundamental assumption for the security of lattice-based cryptographic algorithms. In 2010, Micciancio and Voulgaris proposed an algorithm named the Gauss Sieve, which is a fast and heuristic algorithm for solving the SVP. Schneider presented another algorithm named the Ideal Gauss Sieve in 2011, which is applicable to a special class of lattices, called ideal lattices. The Ideal Gauss Sieve speeds up the Gauss Sieve by using some properties of the ideal lattices. However, the algorithm is applicable only if the dimension of the ideal lattice n is a power of two or n+1 is a prime. Ishiguro et al. proposed an extension to the Ideal Gauss Sieve algorithm in 2014, which is applicable only if the prime factor of n is 2 or 3. In this paper, we first generalize the dimensions that can be applied to the ideal lattice properties to when the prime factor of n is derived from 2, p or q for two primes p and q. To the best of our knowledge, no algorithm using ideal lattice properties has been proposed so far with dimensions such as: 20, 44, 80, 84, and 92. Then we present an algorithm that speeds up the Gauss Sieve for these dimensions. Our experiments show that our proposed algorithm is 10 times faster than the original Gauss Sieve in solving an 80-dimensional SVP problem. Moreover, we propose a rotation-based Gauss Sieve that is approximately 1.5 times faster than the Ideal Gauss Sieve.

  • On the Complexity of the LWR-Solving BKW Algorithm Open Access

    Hiroki OKADA  Atsushi TAKAYASU  Kazuhide FUKUSHIMA  Shinsaku KIYOMOTO  Tsuyoshi TAKAGI  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    173-182

    The Blum-Kalai-Wasserman algorithm (BKW) is an algorithm for solving the learning parity with noise problem, which was then adapted for solving the learning with errors problem (LWE) by Albrecht et al. Duc et al. applied BKW also to the learning with rounding problem (LWR). The number of blocks is a parameter of BKW. By optimizing the number of blocks, we can minimize the time complexity of BKW. However, Duc et al. did not derive the optimal number of blocks theoretically, but they searched for it numerically. Duc et al. also showed that the required number of samples for BKW for solving LWE can be dramatically decreased using Lyubashevsky's idea. However, it is not shown that his idea is also applicable to LWR. In this paper, we theoretically derive the asymptotically optimal number of blocks, and then analyze the minimum asymptotic time complexity of the algorithm. We also show that Lyubashevsky's idea can be applied to LWR-solving BKW, under a heuristic assumption that is regularly used in the analysis of LPN-solving BKW. Furthermore, we derive an equation that relates the Gaussian parameter σ of LWE and the modulus p of LWR. When σ and p satisfy the equation, the asymptotic time complexity of BKW to solve LWE and LWR are the same.