Full Text Views
144
This letter reports on the effectiveness of applying the K-singular value decomposition (SVD) dictionary learning to the electroencephalogram (EEG) compressed sensing framework with outlier detection and independent component analysis. Using the K-SVD dictionary matrix with our design parameter optimization, for example, at compression ratio of four, we improved the normalized mean square error value by 31.4% compared with that of the discrete cosine transform dictionary for CHB-MIT Scalp EEG Database.
Kotaro NAGAI
University of Yamanashi
Daisuke KANEMOTO
Osaka University
Makoto OHKI
University of Yamanashi
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kotaro NAGAI, Daisuke KANEMOTO, Makoto OHKI, "Applying K-SVD Dictionary Learning for EEG Compressed Sensing Framework with Outlier Detection and Independent Component Analysis" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 9, pp. 1375-1378, September 2021, doi: 10.1587/transfun.2020EAL2123.
Abstract: This letter reports on the effectiveness of applying the K-singular value decomposition (SVD) dictionary learning to the electroencephalogram (EEG) compressed sensing framework with outlier detection and independent component analysis. Using the K-SVD dictionary matrix with our design parameter optimization, for example, at compression ratio of four, we improved the normalized mean square error value by 31.4% compared with that of the discrete cosine transform dictionary for CHB-MIT Scalp EEG Database.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020EAL2123/_p
Copy
@ARTICLE{e104-a_9_1375,
author={Kotaro NAGAI, Daisuke KANEMOTO, Makoto OHKI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Applying K-SVD Dictionary Learning for EEG Compressed Sensing Framework with Outlier Detection and Independent Component Analysis},
year={2021},
volume={E104-A},
number={9},
pages={1375-1378},
abstract={This letter reports on the effectiveness of applying the K-singular value decomposition (SVD) dictionary learning to the electroencephalogram (EEG) compressed sensing framework with outlier detection and independent component analysis. Using the K-SVD dictionary matrix with our design parameter optimization, for example, at compression ratio of four, we improved the normalized mean square error value by 31.4% compared with that of the discrete cosine transform dictionary for CHB-MIT Scalp EEG Database.},
keywords={},
doi={10.1587/transfun.2020EAL2123},
ISSN={1745-1337},
month={September},}
Copy
TY - JOUR
TI - Applying K-SVD Dictionary Learning for EEG Compressed Sensing Framework with Outlier Detection and Independent Component Analysis
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1375
EP - 1378
AU - Kotaro NAGAI
AU - Daisuke KANEMOTO
AU - Makoto OHKI
PY - 2021
DO - 10.1587/transfun.2020EAL2123
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2021
AB - This letter reports on the effectiveness of applying the K-singular value decomposition (SVD) dictionary learning to the electroencephalogram (EEG) compressed sensing framework with outlier detection and independent component analysis. Using the K-SVD dictionary matrix with our design parameter optimization, for example, at compression ratio of four, we improved the normalized mean square error value by 31.4% compared with that of the discrete cosine transform dictionary for CHB-MIT Scalp EEG Database.
ER -