We discuss the spectral efficiency of orthogonal frequency-division multiplexing (OFDM) signals widely adopted in practical systems from a viewpoint of their power spectral density property. Since the conventional OFDM does not make use of pulse shaping filter, its out-of-band (OOB) spectrum may not be negligible especially when the number of subcarriers is small. Thus, in practice, windowing is applied to mitigate OOB emission by smoothing the transition of consecutive OFDM symbols, but its effectiveness has not been well investigated. Furthermore, OFDM signal suffers from nonlinear distortion associated with its high signal peak-to-average power ratio (PAPR), which also leads to OOB radiation. We examine how power amplifier nonlinearity affects the spectral efficiency based on the theoretical results developed in the literature.
Hideki OCHIAI
Yokohama National University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hideki OCHIAI, "On Spectral Efficiency of OFDM Signals Based on Windowing" in IEICE TRANSACTIONS on Fundamentals,
vol. E106-A, no. 5, pp. 752-764, May 2023, doi: 10.1587/transfun.2022WBI0002.
Abstract: We discuss the spectral efficiency of orthogonal frequency-division multiplexing (OFDM) signals widely adopted in practical systems from a viewpoint of their power spectral density property. Since the conventional OFDM does not make use of pulse shaping filter, its out-of-band (OOB) spectrum may not be negligible especially when the number of subcarriers is small. Thus, in practice, windowing is applied to mitigate OOB emission by smoothing the transition of consecutive OFDM symbols, but its effectiveness has not been well investigated. Furthermore, OFDM signal suffers from nonlinear distortion associated with its high signal peak-to-average power ratio (PAPR), which also leads to OOB radiation. We examine how power amplifier nonlinearity affects the spectral efficiency based on the theoretical results developed in the literature.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2022WBI0002/_p
Copy
@ARTICLE{e106-a_5_752,
author={Hideki OCHIAI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={On Spectral Efficiency of OFDM Signals Based on Windowing},
year={2023},
volume={E106-A},
number={5},
pages={752-764},
abstract={We discuss the spectral efficiency of orthogonal frequency-division multiplexing (OFDM) signals widely adopted in practical systems from a viewpoint of their power spectral density property. Since the conventional OFDM does not make use of pulse shaping filter, its out-of-band (OOB) spectrum may not be negligible especially when the number of subcarriers is small. Thus, in practice, windowing is applied to mitigate OOB emission by smoothing the transition of consecutive OFDM symbols, but its effectiveness has not been well investigated. Furthermore, OFDM signal suffers from nonlinear distortion associated with its high signal peak-to-average power ratio (PAPR), which also leads to OOB radiation. We examine how power amplifier nonlinearity affects the spectral efficiency based on the theoretical results developed in the literature.},
keywords={},
doi={10.1587/transfun.2022WBI0002},
ISSN={1745-1337},
month={May},}
Copy
TY - JOUR
TI - On Spectral Efficiency of OFDM Signals Based on Windowing
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 752
EP - 764
AU - Hideki OCHIAI
PY - 2023
DO - 10.1587/transfun.2022WBI0002
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E106-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2023
AB - We discuss the spectral efficiency of orthogonal frequency-division multiplexing (OFDM) signals widely adopted in practical systems from a viewpoint of their power spectral density property. Since the conventional OFDM does not make use of pulse shaping filter, its out-of-band (OOB) spectrum may not be negligible especially when the number of subcarriers is small. Thus, in practice, windowing is applied to mitigate OOB emission by smoothing the transition of consecutive OFDM symbols, but its effectiveness has not been well investigated. Furthermore, OFDM signal suffers from nonlinear distortion associated with its high signal peak-to-average power ratio (PAPR), which also leads to OOB radiation. We examine how power amplifier nonlinearity affects the spectral efficiency based on the theoretical results developed in the literature.
ER -