The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

  • Impact Factor

    0.48

  • Eigenfactor

    0.003

  • article influence

    0.1

  • Cite Score

    1.1

Advance publication (published online immediately after acceptance)

Volume E106-A No.5  (Publication Date:2023/05/01)

    Special Section on Mathematical Systems Science and its Applications
  • FOREWORD Open Access

    Yoshinobu KAWABE  

     
    FOREWORD

      Page(s):
    697-697
  • Thermal-Comfort Aware Online Co-Scheduling Framework for HVAC, Battery Systems, and Appliances in Smart Buildings

    Daichi WATARI  Ittetsu TANIGUCHI  Francky CATTHOOR  Charalampos MARANTOS  Kostas SIOZIOS  Elham SHIRAZI  Dimitrios SOUDRIS  Takao ONOYE  

     
    INVITED PAPER

      Pubricized:
    2022/10/24
      Page(s):
    698-706

    Energy management in buildings is vital for reducing electricity costs and maximizing the comfort of occupants. Excess solar generation can be used by combining a battery storage system and a heating, ventilation, and air-conditioning (HVAC) system so that occupants feel comfortable. Despite several studies on the scheduling of appliances, batteries, and HVAC, comprehensive and time scalable approaches are required that integrate such predictive information as renewable generation and thermal comfort. In this paper, we propose an thermal-comfort aware online co-scheduling framework that incorporates optimal energy scheduling and a prediction model of PV generation and thermal comfort with the model predictive control (MPC) approach. We introduce a photovoltaic (PV) energy nowcasting and thermal-comfort-estimation model that provides useful information for optimization. The energy management problem is formulated as three coordinated optimization problems that cover fast and slow time-scales by considering predicted information. This approach reduces the time complexity without a significant negative impact on the result's global nature and its quality. Experimental results show that our proposed framework achieves optimal energy management that takes into account the trade-off between electricity expenses and thermal comfort. Our sensitivity analysis indicates that introducing a battery significantly improves the trade-off relationship.

  • Conflict Reduction of Acyclic Flow Event Structures

    Toshiyuki MIYAMOTO  Marika IZAWA  

     
    PAPER

      Pubricized:
    2022/10/26
      Page(s):
    707-714

    Event structures are a well-known modeling formalism for concurrent systems with causality and conflict relations. The flow event structure (FES) is a variant of event structures, which is a generalization of the prime event structure. In an FES, two events may be in conflict even though they are not syntactically in conflict; this is called a semantic conflict. The existence of semantic conflict in an FES motivates reducing conflict relations (i.e., conflict reduction) to obtain a simpler structure. In this paper, we study conflict reduction in acyclic FESs. A necessary and sufficient condition for conflict reduction is given; algorithms to compute semantic conflict, local configurations, and conflict reduction are proposed. A great time reduction was observed in computational experiments when comparing the proposed with the naive method.

  • Optimal Movement for SLAM by Hopping Rover

    Shuntaro TAKEKUMA  Shun-ichi AZUMA  Ryo ARIIZUMI  Toru ASAI  

     
    PAPER

      Pubricized:
    2022/10/24
      Page(s):
    715-720

    A hopping rover is a robot that can move in low gravity planets by the characteristic motion called the hopping motion. For its autonomous explorations, the so-called SLAM (Simultaneous Localization and Mapping) is a basic function. SLAM is the combination of estimating the position of a robot and creating a map of an unknown environment. Most conventional methods of SLAM are based on odometry to estimate the position of the robot. However, in the case of the hopping rover, the error of odometry becomes considerably large because its hopping motion involves unpredictable bounce on the rough ground on an unexplored planet. Motivated by the above discussion, this paper addresses a problem of finding an optimal movement of the hopping rover for the estimation performance of the SLAM. For the problem, we first set the model of the SLAM system for the hopping rover. The problem is formulated as minimizing the expectation of the estimation error at a pre-specified time with respect to the sequence of control inputs. We show that the optimal input sequence tends to force the final position to be not at the landmark but in front of the landmark, and furthermore, the optimal input sequence is constant on the time interval for optimization.

  • Fixed Point Preserving Model Reduction of Boolean Networks Focusing on Complement and Absorption Laws

    Fuma MOTOYAMA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2022/10/24
      Page(s):
    721-728

    A Boolean network (BN) is well known as a discrete model for analysis and control of complex networks such as gene regulatory networks. Since complex networks are large-scale in general, it is important to consider model reduction. In this paper, we consider model reduction that the information on fixed points (singleton attractors) is preserved. In model reduction studied here, the interaction graph obtained from a given BN is utilized. In the existing method, the minimum feedback vertex set (FVS) of the interaction graph is focused on. The dimension of the state is reduced to the number of elements of the minimum FVS. In the proposed method, we focus on complement and absorption laws of Boolean functions in substitution operations of a Boolean function into other one. By simplifying Boolean functions, the dimension of the state may be further reduced. Through a numerical example, we present that by the proposed method, the dimension of the state can be reduced for BNs that the dimension of the state cannot be reduced by the existing method.

  • Detection of False Data Injection Attacks in Distributed State Estimation of Power Networks

    Sho OBATA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2022/10/24
      Page(s):
    729-735

    In a power network, it is important to detect a cyber attack. In this paper, we propose a method for detecting false data injection (FDI) attacks in distributed state estimation. An FDI attack is well known as one of the typical cyber attacks in a power network. As a method of FDI attack detection, we consider calculating the residual (i.e., the difference between the observed and estimated values). In the proposed detection method, the tentative residual (estimated error) in ADMM (Alternating Direction Method of Multipliers), which is one of the powerful methods in distributed optimization, is applied. First, the effect of an FDI attack is analyzed. Next, based on the analysis result, a detection parameter is introduced based on the residual. A detection method using this parameter is then proposed. Finally, the proposed method is demonstrated through a numerical example on the IEEE 14-bus system.

  • Design of Full State Observer Based on Data-Driven Dual System Representation

    Ryosuke ADACHI  Yuji WAKASA  

     
    PAPER

      Pubricized:
    2022/10/24
      Page(s):
    736-743

    This paper addresses an observer-design method only using data. Usually, the observer requires a mathematical model of a system for state prediction and observer gain calculation. As an alternative to the model-based prediction, the proposed predictor calculates the states using a linear combination of the given data. To design the observer gain, the data which represent dual systems are derived from the data which represent the original system. Linear matrix inequalities that depend on data of the dual system provides the observer gains.

  • Special Section on Intelligent Transport Systems and Wideband Systems
  • FOREWORD Open Access

    Masahiro FUJII  Masanori HAMAMURA  

     
    FOREWORD

      Page(s):
    744-744
  • User's Activities when Using Mobility as a Service — Results of the Smart Mobility Challenge Project 2020 and 2021 —

    Toshihisa SATO  Naohisa HASHIMOTO  

     
    INVITED PAPER

      Pubricized:
    2022/12/19
      Page(s):
    745-751

    Mobility as a Service (MaaS) is expected to spread globally and in Japan as a solution for social issues related to transportation. Researchers have conducted MaaS trials in several cities. However, only a few trials have reached full-scale practical use. Therefore, it is essential to clarify issues such as the business model and user acceptability and seek solutions to social problems rather than simply conducting trials. This paper describes the introduction of a MaaS project supported by the Japanese government known as the “Smart Mobility Challenge” project, conducted in 2020 and 2021. We employed five themes necessary for social implementation from the first trial of this MaaS project. As a consortium, we also promoted regional demonstrations by soliciting regional applications based on these five themes. In addition, we conducted fundamental research using data from the MaaS projects to clarify local transportation issues in detail, collect residents' mobile behavior data, and assess the project's effects on the participant's happiness. We employed the life-space assessment method to investigate the spread of the residents' behavioral life-space resulting from using mobility services. The spread of the life-space mobility before and after using mobility services confirmed an expansion of the life-space because of specific services. Moreover, we conducted questionnaire surveys and clarified the relationships between life-space assessment, human characteristics, and subjective happiness using path analysis. We also conducted a persona-based approach in addition to objective data collection using GPS and wearable monitors and a web-based questionnaire. We found differences between the actual participants and participants assumed by local governments. We conducted interviews and developed tips for improving mobility service. We propose that qualitative data help clarify the image of mobility services that meet the residents' needs.

  • On Spectral Efficiency of OFDM Signals Based on Windowing

    Hideki OCHIAI  

     
    INVITED PAPER

      Pubricized:
    2022/12/19
      Page(s):
    752-764

    We discuss the spectral efficiency of orthogonal frequency-division multiplexing (OFDM) signals widely adopted in practical systems from a viewpoint of their power spectral density property. Since the conventional OFDM does not make use of pulse shaping filter, its out-of-band (OOB) spectrum may not be negligible especially when the number of subcarriers is small. Thus, in practice, windowing is applied to mitigate OOB emission by smoothing the transition of consecutive OFDM symbols, but its effectiveness has not been well investigated. Furthermore, OFDM signal suffers from nonlinear distortion associated with its high signal peak-to-average power ratio (PAPR), which also leads to OOB radiation. We examine how power amplifier nonlinearity affects the spectral efficiency based on the theoretical results developed in the literature.

  • Performance Evaluation of Wi-Fi RTT Lateration without Pre-Constructing a Database

    Tetsuya MANABE  Kazuya SABA  

     
    PAPER

      Pubricized:
    2022/12/02
      Page(s):
    765-774

    This paper proposes an algorithm for estimating the location of wireless access points (APs) in indoor environments to realize smartphone positioning based on Wi-Fi without pre-constructing a database. The proposed method is designed to overcome the main problem of existing positioning methods requiring the advance construction of a database with coordinates or precise AP location measurements. The proposed algorithm constructs a local coordinate system with the first four APs that are activated in turn, and estimates the AP installation location using Wi-Fi round-trip time (RTT) lateration and the ranging results between the APs. The effectiveness of the proposed algorithm is confirmed by conducting experiments in a real indoor environment consisting of two rooms of different sizes to evaluate the positioning performance of the algorithm. The experimental results showed the proposed algorithm using Wi-Fi RTT lateration delivers high smartphone positioning performance without a pre-constructed database or precise AP location measurements.

  • Image Segmentation-Based Bicycle Riding Side Identification Method

    Jeyoen KIM  Takumi SOMA  Tetsuya MANABE  Aya KOJIMA  

     
    PAPER

      Pubricized:
    2022/11/02
      Page(s):
    775-783

    This paper attempts to identify which side of the road a bicycle is currently riding on using a common camera for realizing an advanced bicycle navigation system and bicycle riding safety support system. To identify the roadway area, the proposed method performs semantic segmentation on a front camera image captured by a bicycle drive recorder or smartphone. If the roadway area extends from the center of the image to the right, the bicyclist is riding on the left side of the roadway (i.e., the correct riding position in Japan). In contrast, if the roadway area extends to the left, the bicyclist is on the right side of the roadway (i.e., the incorrect riding position in Japan). We evaluated the accuracy of the proposed method on various road widths with different traffic volumes using video captured by riding bicycles in Tsuruoka City, Yamagata Prefecture, and Saitama City, Saitama Prefecture, Japan. High accuracy (>80%) was achieved for any combination of the segmentation model, riding side identification method, and experimental conditions. Given these results, we believe that we have realized an effective image segmentation-based method to identify which side of the roadway a bicycle riding is on.

  • Evaluation of Non-GPS Train Localization Schemes Using a Commodity Smartphone with Built-In Sensors

    Masaya NISHIGAKI  Takaaki HASEGAWA  Yuki SAIGUSA  

     
    PAPER

      Pubricized:
    2022/11/04
      Page(s):
    784-792

    In this paper, we compare performances of train localization schemes by the dynamic programming of various sensor information obtained from a smartphone attached to a train, and further discuss the most superior sensor information and scheme in this localization system. First, we compare the localization performances of single sensor information schemes, such as 3-axis acceleration information, acoustic information, 3-axis magnetic information, and barometric pressure information. These comparisons reveal that the lateral acceleration information input scheme has the best localization performance. Furthermore, we optimize each data fusion scheme and compare the localization performances of the data-fusion schemes using the optimal ratio of coefficients. The results show that the hybrid scheme has the best localization performance, with a root mean squared error (RMSE) of 12.2 m. However, there are no differences between the RMSEs of the input fusion scheme and 3-axis acceleration input scheme in the most significant three digits. Consequently, we conclude that the 3-axis acceleration input fusion scheme is the most reasonable in terms of simplicity.

  • Space Division Multiplexing Using High-Luminance Cell-Size Reduction Arrangement for Low-Luminance Smartphone Screen to Camera Uplink Communication

    Alisa KAWADE  Wataru CHUJO  Kentaro KOBAYASHI  

     
    PAPER

      Pubricized:
    2022/11/01
      Page(s):
    793-802

    To simultaneously enhance data rate and physical layer security (PLS) for low-luminance smartphone screen to camera uplink communication, space division multiplexing using high-luminance cell-size reduction arrangement is numerically analyzed and experimentally verified. The uplink consists of a low-luminance smartphone screen and an indoor telephoto camera at a long distance of 3.5 meters. The high-luminance cell-size reduction arrangement avoids the influence of spatial inter-symbol interference (ISI) and ambient light to obtain a stable low-luminance screen. To reduce the screen luminance without decreasing the screen pixel value, the arrangement reduces only the high-luminance cell area while keeping the cell spacing. In this study, two technical issues related to high-luminance cell-size reduction arrangement are solved. First, a numerical analysis and experimental results show that the high-luminance cell-size reduction arrangement is more effective in reducing the spatial ISI at low luminance than the conventional low-luminance cell arrangement. Second, in view point of PLS enhancement at wide angles, symbol error rate should be low in front of the screen and high at wide angles. A numerical analysis and experimental results show that the high-luminance cell-size reduction arrangement is more suitable for enhancing PLS at wide angles than the conventional low-luminance cell arrangement.

  • New Bounds of No-Hit-Zone Frequency-Hopping Sequences with Frequency Shift

    Qianhui WEI  Hongyu HAN  Limengnan ZHOU  Hanzhou WU  

     
    LETTER

      Pubricized:
    2022/11/02
      Page(s):
    803-806

    In quasi-synchronous FH multiple-access (QS-FHMA) systems, no-hit-zone frequency-hopping sequences (NHZ-FHSs) can offer interference-free FHMA performance. But, outside the no-hit-zone (NHZ), the Hamming correlation of traditional NHZ-FHZs maybe so large that the performance becomes not good. And in high-speed mobile environment, Doppler shift phenomenon will appear. In order to ensure the performance of FHMA, it is necessary to study the NHZ-FHSs in the presence of transmission delay and frequency offset. In this paper, We derive a lower bound on the maximum time-frequency two-dimensional Hamming correlation outside of the NHZ of NHZ-FHSs. The Zeng-Zhou-Liu-Liu bound is a particular situation of the new bound for frequency shift is zero.

  • Blind Carrier Frequency Offset Estimation in Weighted Fractional Fourier Transform Communication Systems

    Toshifumi KOJIMA  Kouji OHUCHI  

     
    LETTER

      Pubricized:
    2022/11/07
      Page(s):
    807-811

    In this study, a blind carrier frequency offset (CFO) estimation method is proposed using the time-frequency symmetry of the transmitted signals of a weighted Fourier transform (WFrFT) communication system. Blind CFO estimation is achieved by focusing on the property that results in matching the signal waveforms before and after the Fourier transform when the WFrFT parameter is set to a certain value. Numerical simulations confirm that the proposed method is more resistant to Rayleigh fading than the conventional estimation methods.

  • Elevation Filter Design for Short-Range Clutter Suppression on Airborne Radar in MIMO System

    Fengde JIA  Jihong TAN  Xiaochen LU  Junhui QIAN  

     
    LETTER

      Pubricized:
    2022/11/04
      Page(s):
    812-815

    Short-range ambiguous clutter can seriously affect the performance of airborne radar target detection when detecting long-range targets. In this letter, a multiple-input-multiple-output (MIMO) array structure elevation filter (EF) is designed to suppress short-range clutter (SRC). The sidelobe level value in the short-range clutter region is taken as the objective function to construct the optimization problem and the optimal EF weight vector can be obtained by using the convex optimization tool. The simulation results show that the MIMO system can achieve better range ambiguous clutter suppression than the traditional phased array (PA) system.

  • Special Section on Analog Circuit Techniques and Related Topics
  • FOREWORD Open Access

    Cosy MUTO  

     
    FOREWORD

      Page(s):
    816-816
  • Modulation Configurations of Phase Locked Loops for High-Speed and High-Precision Wired and Wireless Applications

    Masaru KOKUBO  

     
    INVITED PAPER

      Pubricized:
    2022/11/25
      Page(s):
    817-822

    This paper summarizes the modulation configurations of phase locked loops (PLLs) and their integration in semiconductor circuits, e.g., the input modulation for cellular phones, direct-modulation for low power wireless sensor networks, feedback-loop modulation for high-speed transmission, and two-point modulation for short-range radio transceivers. In this survey, basic configuration examples of integrated circuits for wired and wireless applications which are using the PLL modulation configurations are explained. It is important to select the method for simply and effectively determining the characteristics corresponding to the specific application. The paper also surveys technologies for future PLL design for digitizing of an entire PLL to reduce the phase noise due to a modulation by using a feedback loop with a precise digital phase comparison and a numerically controlled oscillator with high linearity.

  • Thermal Noise Analysis of Ring Amplifier in Cyclic Analog-to-Digital Converter

    Eiki KAYAMA  Kenta MORI  Taichi MAEBOU  Yuanchi CHEN  Hao SAN  Tatsuji MATSUURA  Masao HOTTA  

     
    PAPER

      Pubricized:
    2022/11/25
      Page(s):
    823-831

    This work presents the thermal noise analysis results of ring amplifiers in the MDAC of cyclic ADC. Ring amplifier is an alternative closed-loop structure for residual signal amplification with MDAC, and two types of ring amplifiers: pseudo-differential and fully-differential ring-amplifiers are considered for the implementation of MDAC in cyclic ADC. Theoretical analysis results show that power of thermal noise in MDAC with a pseudo-differential amplifier is much higher than that with a fully-differential ring-amplifier. SPICE simulation results with transient noise analyses also show the similar trend. Experimental prototype cyclic ADCs in 65nm CMOS technology are implemented with the same architecture and the same circuit components except for amplifiers. Comparison of the measured results of the two ADCs confirms the validity of the theoretical analysis results.

  • Pixel Variation Characteristics of a Global Shutter THz Imager and its Calibration Technique

    Yuri KANAZAWA  Prasoon AMBALATHANKANDY  Masayuki IKEBE  

     
    PAPER

      Pubricized:
    2022/11/25
      Page(s):
    832-839

    We have developed a Si-CMOS terahertz image sensor to address the paucity of low-cost terahertz detectors. Our imaging pixel directly connects to a VCO-based ADC and achieves pixel parallel ADC architecture for high-speed global shutter THz imaging. In this paper, we propose a digital calibration technique for offset and gain variation of each pixel using global shutter operation. The calibration technique gives reference signal to all pixels simultaneously and takes reference frames as a part of the high-speed image captures. Using this technique, we achieve offset/non-linear gain variation suppression of 85.7% compared to without correction.

  • Regular Section
  • BayesianPUFNet: Training Sample Efficient Modeling Attack for Physically Unclonable Functions

    Hiromitsu AWANO  Makoto IKEDA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/10/31
      Page(s):
    840-850

    This paper proposes a deep neural network named BayesianPUFNet that can achieve high prediction accuracy even with few challenge-response pairs (CRPs) available for training. Generally, modeling attacks are a vulnerability that could compromise the authenticity of physically unclonable functions (PUFs); thus, various machine learning methods including deep neural networks have been proposed to assess the vulnerability of PUFs. However, conventional modeling attacks have not considered the cost of CRP collection and analyzed attacks based on the assumption that sufficient CRPs were available for training; therefore, previous studies may have underestimated the vulnerability of PUFs. Herein, we show that the application of Bayesian deep neural networks that incorporate Bayesian statistics can provide accurate response prediction even in situations where sufficient CRPs are not available for learning. Numerical experiments show that the proposed model uses only half the CRP to achieve the same response prediction as that of the conventional methods. Our code is openly available on https://github.com/bayesian-puf-net/bayesian-puf-net.git.

  • Investigations on c-Bent4 Functions via the Unitary Transform and c-Correlation Functions

    Niu JIANG  Zepeng ZHUO  Guolong CHEN  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/11/11
      Page(s):
    851-857

    In this paper, some properties of Boolean functions via the unitary transform and c-correlation functions are presented. Based on the unitary transform, we present two classes of secondary constructions for c-bent4 functions. Also, by using the c-correlation functions, a direct link between c-autocorrelation function and the unitary transform of Boolean functions is provided, and the relationship among c-crosscorrelation functions of arbitrary four Boolean functions can be obtained.

  • Novel Auto-Calibration Method for 7-Elements Hexagonal Array with Mutual Coupling

    Fankun ZENG  Xin QIU  Jinhai LI  Biqi LONG  Wuhai SU  Xiaoran CHEN  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/11/10
      Page(s):
    858-862

    Mutual coupling between antenna array elements will significantly degrade the performance of the array signal processing methods. Due to the Toeplitz structure of mutual coupling matrix (MCM), there exist some mutual coupling calibration algorithms for the uniform linear array (ULA) or uniform circular array (UCA). But few methods for other arrays. In this letter, we derive a new transformation formula for the MCM of the 7-elements hexagonal array (HA-7). Further, we extend two mutual coupling auto-calibration methods from UCA to HA by the transformation formula. Simulation results demonstrate the validity of the proposed two methods.

  • More on Incorrigible Sets of Binary Linear Codes

    Lingjun KONG  Haiyang LIU  Lianrong MA  

     
    LETTER-Coding Theory

      Pubricized:
    2022/10/31
      Page(s):
    863-867

    This letter is concerned with incorrigible sets of binary linear codes. For a given binary linear code C, we represent the numbers of incorrigible sets of size up to ⌈3/2d - 1⌉ using the weight enumerator of C, where d is the minimum distance of C. In addition, we determine the incorrigible set enumerators of binary Golay codes G23 and G24 through combinatorial methods.

  • A Computer-Aided Solution to Find All Feasible Schemes of Cyclic Interference Alignment for Propagation-Delay Based X Channels

    Conggai LI  Feng LIU  Xin ZHOU  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2022/11/02
      Page(s):
    868-870

    To obtain a full picture of potential applications for propagation-delay based X channels, it is important to obtain all feasible schemes of cyclic interference alignment including the encoder, channel instance, and decoder. However, when the dimension goes larger, theoretical analysis about this issue will become tedious and even impossible. In this letter, we propose a computer-aided solution by searching the channel space and the scheduling space, which can find all feasible schemes in details. Examples are given for some typical X channels. Computational complexity is further analyzed.

  • A Retransmission Scheme in IEEE 802.11be Synchronized Multi-Link WLANs

    Linjie ZHU  Liang GU  Rongliang CHEN  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2022/11/02
      Page(s):
    871-875

    A novel retransmission scheme, considering both transmission rate and frame error rate, is proposed to alleviate the inefficiencies caused by head-of-line blocking and null padding problems during retransmission in IEEE 802.11be synchronous multi-link wireless local area networks. Simulation results show that the proposed scheme improves throughput by up to 200% over the legacy scheme by reallocating lost subframes and adding effective duplicate subframes to multiple links.