Full Text Views
109
Backscatter wireless communications offer advantages such as batteryless operations, small form factor, and radio regulatory exemption sensors. The major challenge ahead of backscatter wireless communications is synchronized multicarrier data collection, which can be realized by rejecting mutual harmonics among backscatters. This paper analyzes the mutual interferences of digitally modulated multicarrier backscatter to find interferences from higher frequency subcarriers to lower frequency subcarriers, which do not take place in analog modulated multicarrier backscatters, is harmful for densely populated subcarriers. This reverse interference distorts the harmonics replica, deteriorating the performance of the existing method, which rejects mutual interference among subcarriers by 5dB processing gain. To solve this problem, this paper analyzes the relationship between subcarrier spacing and reverse interference, and reveals that an alternate channel spacing, with channel separation twice the bandwidth of a subcarrier, can provide reasonably dense subcarrier allocation and can alleviate reverse interference. The idea is examined with prototype sensors in a wired experiment and in an indoor propagation experiment. The results reveal that with alternate channel spacing, the reverse interference practically becomes negligible, and the existing interference rejection method achieves the original processing gain of 5dB with one hundredth packet error rate reduction.
Jin MITSUGI
Keio University
Yuki SATO
Keio University
Yuusuke KAWAKITA
Kanagawa Institute of Technology
Haruhisa ICHIKAWA
The University of Electro-Communications
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Jin MITSUGI, Yuki SATO, Yuusuke KAWAKITA, Haruhisa ICHIKAWA, "Frequency Efficient Subcarrier Spacing in Multicarrier Backscatter Sensors System" in IEICE TRANSACTIONS on Fundamentals,
vol. E102-A, no. 12, pp. 1834-1841, December 2019, doi: 10.1587/transfun.E102.A.1834.
Abstract: Backscatter wireless communications offer advantages such as batteryless operations, small form factor, and radio regulatory exemption sensors. The major challenge ahead of backscatter wireless communications is synchronized multicarrier data collection, which can be realized by rejecting mutual harmonics among backscatters. This paper analyzes the mutual interferences of digitally modulated multicarrier backscatter to find interferences from higher frequency subcarriers to lower frequency subcarriers, which do not take place in analog modulated multicarrier backscatters, is harmful for densely populated subcarriers. This reverse interference distorts the harmonics replica, deteriorating the performance of the existing method, which rejects mutual interference among subcarriers by 5dB processing gain. To solve this problem, this paper analyzes the relationship between subcarrier spacing and reverse interference, and reveals that an alternate channel spacing, with channel separation twice the bandwidth of a subcarrier, can provide reasonably dense subcarrier allocation and can alleviate reverse interference. The idea is examined with prototype sensors in a wired experiment and in an indoor propagation experiment. The results reveal that with alternate channel spacing, the reverse interference practically becomes negligible, and the existing interference rejection method achieves the original processing gain of 5dB with one hundredth packet error rate reduction.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E102.A.1834/_p
Copy
@ARTICLE{e102-a_12_1834,
author={Jin MITSUGI, Yuki SATO, Yuusuke KAWAKITA, Haruhisa ICHIKAWA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Frequency Efficient Subcarrier Spacing in Multicarrier Backscatter Sensors System},
year={2019},
volume={E102-A},
number={12},
pages={1834-1841},
abstract={Backscatter wireless communications offer advantages such as batteryless operations, small form factor, and radio regulatory exemption sensors. The major challenge ahead of backscatter wireless communications is synchronized multicarrier data collection, which can be realized by rejecting mutual harmonics among backscatters. This paper analyzes the mutual interferences of digitally modulated multicarrier backscatter to find interferences from higher frequency subcarriers to lower frequency subcarriers, which do not take place in analog modulated multicarrier backscatters, is harmful for densely populated subcarriers. This reverse interference distorts the harmonics replica, deteriorating the performance of the existing method, which rejects mutual interference among subcarriers by 5dB processing gain. To solve this problem, this paper analyzes the relationship between subcarrier spacing and reverse interference, and reveals that an alternate channel spacing, with channel separation twice the bandwidth of a subcarrier, can provide reasonably dense subcarrier allocation and can alleviate reverse interference. The idea is examined with prototype sensors in a wired experiment and in an indoor propagation experiment. The results reveal that with alternate channel spacing, the reverse interference practically becomes negligible, and the existing interference rejection method achieves the original processing gain of 5dB with one hundredth packet error rate reduction.},
keywords={},
doi={10.1587/transfun.E102.A.1834},
ISSN={1745-1337},
month={December},}
Copy
TY - JOUR
TI - Frequency Efficient Subcarrier Spacing in Multicarrier Backscatter Sensors System
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1834
EP - 1841
AU - Jin MITSUGI
AU - Yuki SATO
AU - Yuusuke KAWAKITA
AU - Haruhisa ICHIKAWA
PY - 2019
DO - 10.1587/transfun.E102.A.1834
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E102-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2019
AB - Backscatter wireless communications offer advantages such as batteryless operations, small form factor, and radio regulatory exemption sensors. The major challenge ahead of backscatter wireless communications is synchronized multicarrier data collection, which can be realized by rejecting mutual harmonics among backscatters. This paper analyzes the mutual interferences of digitally modulated multicarrier backscatter to find interferences from higher frequency subcarriers to lower frequency subcarriers, which do not take place in analog modulated multicarrier backscatters, is harmful for densely populated subcarriers. This reverse interference distorts the harmonics replica, deteriorating the performance of the existing method, which rejects mutual interference among subcarriers by 5dB processing gain. To solve this problem, this paper analyzes the relationship between subcarrier spacing and reverse interference, and reveals that an alternate channel spacing, with channel separation twice the bandwidth of a subcarrier, can provide reasonably dense subcarrier allocation and can alleviate reverse interference. The idea is examined with prototype sensors in a wired experiment and in an indoor propagation experiment. The results reveal that with alternate channel spacing, the reverse interference practically becomes negligible, and the existing interference rejection method achieves the original processing gain of 5dB with one hundredth packet error rate reduction.
ER -