Emerging solid state drives (SSDs) based on a next-generation memory technology have been recently released in market. In this work, we call them low-latency SSDs because the device latency of them is an order of magnitude lower than that of conventional NAND flash SSDs. Although low-latency SSDs can drastically reduce an I/O latency perceived by an application, the overhead of OS processing included in the I/O latency has become noticeable because of the very low device latency. Since the OS processing is executed on a CPU core, its operating frequency should be maximized for reducing the OS overhead. However, a higher core frequency causes the higher CPU power consumption during I/O accesses to low-latency SSDs. Therefore, we propose the device utilization-aware DVFS (DU-DVFS) technique that periodically monitors the utilization of a target block device and applies dynamic voltage and frequency scaling (DVFS) to CPU cores executing I/O-intensive processes only when the block device is fully utilized. In this case, DU-DVFS can reduce the CPU power consumption without hurting performance because the delay of OS processing incurred by decreasing the core frequency can be hidden. Our evaluation with 28 I/O-intensive workloads on a real server containing an Intel® Optane™ SSD demonstrates that DU-DVFS reduces the CPU power consumption by 41.4% on average (up to 53.8%) with a negligible performance degradation, compared to a standard DVFS governor on Linux. Moreover, the evaluation with multiprogrammed workloads composed of I/O-intensive and non-I/O-intensive programs shows that DU-DVFS is also effective for them because it can apply DVFS only to CPU cores executing I/O-intensive processes.
Satoshi IMAMURA
Fujitsu Laboratories Ltd.
Eiji YOSHIDA
Fujitsu Laboratories Ltd.
Kazuichi OE
Fujitsu Laboratories Ltd.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Satoshi IMAMURA, Eiji YOSHIDA, Kazuichi OE, "Reducing CPU Power Consumption with Device Utilization-Aware DVFS for Low-Latency SSDs" in IEICE TRANSACTIONS on Information,
vol. E102-D, no. 9, pp. 1740-1749, September 2019, doi: 10.1587/transinf.2018EDP7337.
Abstract: Emerging solid state drives (SSDs) based on a next-generation memory technology have been recently released in market. In this work, we call them low-latency SSDs because the device latency of them is an order of magnitude lower than that of conventional NAND flash SSDs. Although low-latency SSDs can drastically reduce an I/O latency perceived by an application, the overhead of OS processing included in the I/O latency has become noticeable because of the very low device latency. Since the OS processing is executed on a CPU core, its operating frequency should be maximized for reducing the OS overhead. However, a higher core frequency causes the higher CPU power consumption during I/O accesses to low-latency SSDs. Therefore, we propose the device utilization-aware DVFS (DU-DVFS) technique that periodically monitors the utilization of a target block device and applies dynamic voltage and frequency scaling (DVFS) to CPU cores executing I/O-intensive processes only when the block device is fully utilized. In this case, DU-DVFS can reduce the CPU power consumption without hurting performance because the delay of OS processing incurred by decreasing the core frequency can be hidden. Our evaluation with 28 I/O-intensive workloads on a real server containing an Intel® Optane™ SSD demonstrates that DU-DVFS reduces the CPU power consumption by 41.4% on average (up to 53.8%) with a negligible performance degradation, compared to a standard DVFS governor on Linux. Moreover, the evaluation with multiprogrammed workloads composed of I/O-intensive and non-I/O-intensive programs shows that DU-DVFS is also effective for them because it can apply DVFS only to CPU cores executing I/O-intensive processes.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2018EDP7337/_p
Copy
@ARTICLE{e102-d_9_1740,
author={Satoshi IMAMURA, Eiji YOSHIDA, Kazuichi OE, },
journal={IEICE TRANSACTIONS on Information},
title={Reducing CPU Power Consumption with Device Utilization-Aware DVFS for Low-Latency SSDs},
year={2019},
volume={E102-D},
number={9},
pages={1740-1749},
abstract={Emerging solid state drives (SSDs) based on a next-generation memory technology have been recently released in market. In this work, we call them low-latency SSDs because the device latency of them is an order of magnitude lower than that of conventional NAND flash SSDs. Although low-latency SSDs can drastically reduce an I/O latency perceived by an application, the overhead of OS processing included in the I/O latency has become noticeable because of the very low device latency. Since the OS processing is executed on a CPU core, its operating frequency should be maximized for reducing the OS overhead. However, a higher core frequency causes the higher CPU power consumption during I/O accesses to low-latency SSDs. Therefore, we propose the device utilization-aware DVFS (DU-DVFS) technique that periodically monitors the utilization of a target block device and applies dynamic voltage and frequency scaling (DVFS) to CPU cores executing I/O-intensive processes only when the block device is fully utilized. In this case, DU-DVFS can reduce the CPU power consumption without hurting performance because the delay of OS processing incurred by decreasing the core frequency can be hidden. Our evaluation with 28 I/O-intensive workloads on a real server containing an Intel® Optane™ SSD demonstrates that DU-DVFS reduces the CPU power consumption by 41.4% on average (up to 53.8%) with a negligible performance degradation, compared to a standard DVFS governor on Linux. Moreover, the evaluation with multiprogrammed workloads composed of I/O-intensive and non-I/O-intensive programs shows that DU-DVFS is also effective for them because it can apply DVFS only to CPU cores executing I/O-intensive processes.},
keywords={},
doi={10.1587/transinf.2018EDP7337},
ISSN={1745-1361},
month={September},}
Copy
TY - JOUR
TI - Reducing CPU Power Consumption with Device Utilization-Aware DVFS for Low-Latency SSDs
T2 - IEICE TRANSACTIONS on Information
SP - 1740
EP - 1749
AU - Satoshi IMAMURA
AU - Eiji YOSHIDA
AU - Kazuichi OE
PY - 2019
DO - 10.1587/transinf.2018EDP7337
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E102-D
IS - 9
JA - IEICE TRANSACTIONS on Information
Y1 - September 2019
AB - Emerging solid state drives (SSDs) based on a next-generation memory technology have been recently released in market. In this work, we call them low-latency SSDs because the device latency of them is an order of magnitude lower than that of conventional NAND flash SSDs. Although low-latency SSDs can drastically reduce an I/O latency perceived by an application, the overhead of OS processing included in the I/O latency has become noticeable because of the very low device latency. Since the OS processing is executed on a CPU core, its operating frequency should be maximized for reducing the OS overhead. However, a higher core frequency causes the higher CPU power consumption during I/O accesses to low-latency SSDs. Therefore, we propose the device utilization-aware DVFS (DU-DVFS) technique that periodically monitors the utilization of a target block device and applies dynamic voltage and frequency scaling (DVFS) to CPU cores executing I/O-intensive processes only when the block device is fully utilized. In this case, DU-DVFS can reduce the CPU power consumption without hurting performance because the delay of OS processing incurred by decreasing the core frequency can be hidden. Our evaluation with 28 I/O-intensive workloads on a real server containing an Intel® Optane™ SSD demonstrates that DU-DVFS reduces the CPU power consumption by 41.4% on average (up to 53.8%) with a negligible performance degradation, compared to a standard DVFS governor on Linux. Moreover, the evaluation with multiprogrammed workloads composed of I/O-intensive and non-I/O-intensive programs shows that DU-DVFS is also effective for them because it can apply DVFS only to CPU cores executing I/O-intensive processes.
ER -