In order to suppress constant input limit cycles in 2-D separable denominator digital filters, bias cancel realizations are proposed by modifying 2-D separable denominator digital filters free of zero imput limit cycles.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masayuki KAWAMATA, Tatsuo HIGUCHI, "Limit Cycle-Free 2-D Separable Denominator Digital Filters under Any Constant Input Conditions" in IEICE TRANSACTIONS on transactions,
vol. E70-E, no. 4, pp. 373-375, April 1987, doi: .
Abstract: In order to suppress constant input limit cycles in 2-D separable denominator digital filters, bias cancel realizations are proposed by modifying 2-D separable denominator digital filters free of zero imput limit cycles.
URL: https://global.ieice.org/en_transactions/transactions/10.1587/e70-e_4_373/_p
Copy
@ARTICLE{e70-e_4_373,
author={Masayuki KAWAMATA, Tatsuo HIGUCHI, },
journal={IEICE TRANSACTIONS on transactions},
title={Limit Cycle-Free 2-D Separable Denominator Digital Filters under Any Constant Input Conditions},
year={1987},
volume={E70-E},
number={4},
pages={373-375},
abstract={In order to suppress constant input limit cycles in 2-D separable denominator digital filters, bias cancel realizations are proposed by modifying 2-D separable denominator digital filters free of zero imput limit cycles.},
keywords={},
doi={},
ISSN={},
month={April},}
Copy
TY - JOUR
TI - Limit Cycle-Free 2-D Separable Denominator Digital Filters under Any Constant Input Conditions
T2 - IEICE TRANSACTIONS on transactions
SP - 373
EP - 375
AU - Masayuki KAWAMATA
AU - Tatsuo HIGUCHI
PY - 1987
DO -
JO - IEICE TRANSACTIONS on transactions
SN -
VL - E70-E
IS - 4
JA - IEICE TRANSACTIONS on transactions
Y1 - April 1987
AB - In order to suppress constant input limit cycles in 2-D separable denominator digital filters, bias cancel realizations are proposed by modifying 2-D separable denominator digital filters free of zero imput limit cycles.
ER -