1-2hit |
Amir FATHI Sarkis AZIZIAN Khayrollah HADIDI Abdollah KHOEI
This paper presents design of a novel high speed booth encoder-decoder in a 0.35 µm CMOS technology. Focusing on transistor level implementation of the new architecture and employing newly designed truth table, the gate level delay of the whole system is reduced to one logic gate plus one transistor delay which is the main advantage of the proposed circuit. Simulation results indicate high speed performance of the designed circuit and depict low power dissipation feature of implemented architecture which makes this work suitable for extensive use in high speed arithmetic blocks.
Amir FATHI Sarkis AZIZIAN Khayrollah HADIDI Abdollah KHOEI
A novel high speed 4-2 compressor using static and pass-transistor logic, has been designed in a 0.35 µm CMOS technology. In order to reduce gate level delay and increase the speed, some changes are performed in truth table of conventional 4-2 compressor which leaded to the simplification of logic function for all parameters. Therefore, power dissipation is decreased. In addition, because of similar paths from all inputs to the outputs, the delays are the same. So there will be no need for extra buffers in low latency paths to equalize the delays.