The search functionality is under construction.

Author Search Result

[Author] Daisuke MIZOGUCHI(2hit)

1-2hit
  • A 1.2 Gbps Non-contact 3D-Stacked Inter-Chip Data Communications Technology

    Daisuke MIZOGUCHI  Noriyuki MIURA  Takayasu SAKURAI  Tadahiro KURODA  

     
    PAPER-Interface and Interconnect Techniques

      Vol:
    E89-C No:3
      Page(s):
    320-326

    A wireless interface for stacked chips in System-in-a-Package is presented. The interface utilizes inductive coupling between metal inductors. S21 parameters of the inductive coupling are measured between chips stacked in face-up for the first time. Calculations from a theoretical model have good agreement with the measurements. A transceiver circuit for Non-Return-to-Zero signaling is developed to reduce power dissipation. The transceiver is implemented in a test chip fabricated in 0.35 µm CMOS and the chips are stacked in face-up. The chips communicate through the transceiver at 1.2 Gb/s/ch with 46 mW power dissipation at 3.3 V over 300 µm distance. A scaling scenario is derived based on the theoretical model and measurement results. It indicates that, if the communication distance is reduced to 13 µm in 70 nm CMOS, 34 Tbps/mm2 will be obtained.

  • Constant Magnetic Field Scaling in Inductive-Coupling Data Link

    Daisuke MIZOGUCHI  Noriyuki MIURA  Hiroki ISHIKURO  Tadahiro KURODA  

     
    PAPER-Electronic Circuits

      Vol:
    E91-C No:2
      Page(s):
    200-205

    A wireless transceiver utilizing inductive coupling has been proposed for communication between chips in system in a package. This transceiver can achieve high-speed communication by using two-dimensional channel arrays. To increase the total bandwidth in the channel arrays, the density of the transceiver should be improved, which means that the inductor size should be scaled down. This paper discusses the scaling theory based on a constant magnetic field rule. By decreasing the chip thickness with the process scaling of 1/α, the inductor size can be scaled to 1/α and the data rate can be increased by α. As a result, the number of aggregated channels can be increased by α2 and the aggregated data bandwidth can be increased by α3. The scaling theory is verified by simulations and experiments in 350, 250, 180, and 90 nm CMOS.