The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Dong-Ho LEE(3hit)

1-3hit
  • New Cost-Effective Driving Circuit for Plasma-TV

    Jae Kwang LIM  Heung-Sik TAE  Dong-Ho LEE  Kazuhiro ITO  Jung Pil PARK  

     
    PAPER-Electronic Displays

      Vol:
    E93-C No:2
      Page(s):
    200-204

    Unlike the conventional plasma-TVs using the driving circuit with two polarities during the reset and address periods, the cost-effective driving circuit using only the positive voltage level during the reset and address periods is proposed and implemented in the 42-in. plasma-TV.

  • High-Speed Low-Power CMOS Pipelined Analog-to-Digital Converter

    Ri-A JU  Dong-Ho LEE  Sang-Dae YU  

     
    PAPER

      Vol:
    E82-A No:6
      Page(s):
    981-986

    This paper describes a 10-bit 40-MS/s pipelined A/D converter implemented in a 0.8-µm double-poly, double-metal CMOS process. This A/D converter achieves low power dissipation of 36-mW at 5-V power supply. A 1.5-bit/stage pipelined architecture allows large correction range for comparator offset, and performs fast interstage signal processing. For high speed and low power operation, the sample-and-hold amplifier is designed using op-amp sharing technique and dynamic comparator. In addition, fully-differential folded-cascode op amp with gain-boosting stage is designed by an automatic design tool. When 10-MHz input signal is applied, SNDR is 55.0 dB, and SNR is 56.7 dB. The DNL and INL exhibit 0.6 LSB, +1/-0.75 LSB respectively.

  • New Address Method for Reducing the Address Power Consumption in AC-PDP

    Beong-Ha LIM  Gun-Su KIM  Dong-Ho LEE  Heung-Sik TAE  Seok-Hyun LEE  

     
    PAPER-Electronic Displays

      Vol:
    E97-C No:8
      Page(s):
    820-827

    This paper proposes a new address method to reduce the address power consumption in an AC plasma panel display (AC-PDP). We apply an overlap scan method, in which the scan pulse overlaps with those of the previous scan time and the next scan time. The overlap scan method decreases the address voltage and consequently reduces the address power consumption. However, the drawback of this method is the narrow address voltage margin. This occurs because the maximum address voltage decreases much more than the minimum address voltage does. In order to increase the address voltage margin, we apply a two-step address voltage waveform, in the overlap scan method. In this case, the maximum address voltage increases; however, the minimum address voltage is almost the same. This leads to a wide address voltage margin. Moreover, the two-step address voltage waveform reduces the address power consumption, because the address voltage rises and falls in two steps using an energy recovery capacitor. Consequently, the experimental results show that the new address method reduces the address power consumption by 19.6,Wh (58%) when compared with the conventional method.