The search functionality is under construction.

Author Search Result

[Author] Heung-Sik TAE(13hit)

1-13hit
  • A Cost-Effective Energy-Recovering Sustain Driving Circuit for ac Plasma Display Panels

    Jae Kwang LIM  Heung-Sik TAE  Byungcho CHOI  Seok Gi KIM  

     
    PAPER-Electronic Displays

      Vol:
    E95-C No:2
      Page(s):
    303-308

    A new sustain driving circuit, featuring an energy-recovering function with simple structure and minimal component count, is proposed as a cost-effective solution for driving plasma display panels during the sustaining period. Compared with existing solutions, the proposed circuit reduces the number of semiconductor switches and reactive circuit components without compromising the circuit performance and gas-discharging characteristics. In addition, the proposed circuit utilizes the harness wire as an inductive circuit component, thereby further simplifying the circuit structure. The performance of the proposed circuit is confirmed with a 42-inch plasma display panel.

  • Improvement of Address Discharge Delay Time Using Modified Reset Waveform in AC Plasma Display Panel

    Bhum Jae SHIN  Hyung Dal PARK  Heung-Sik TAE  

     
    PAPER-Electronic Displays

      Vol:
    E95-C No:5
      Page(s):
    958-963

    In order to improve the address discharge characteristics, we propose the modified selective reset waveform utilizing the address-bias voltage (Va-bias) during the ramp-up period. It is revealed that the proper Va-bias makes the weak discharge between the address and scan electrodes which plays a role in sufficiently removing the wall charge, thereby contributing to minimizing the wall-voltage variation during the address-period. As a result of adopting the Va-bias in the conventional selective reset driving waveform, it was found that the address discharge delay time can be shortened by approximately 40 ns and the address period of each subfield can be significantly reduced by about 43 µs.

  • Modified Reset Waveform to Widen Driving Margin under Low Address Voltage in AC-Plasma Display Panel

    Hyung Dal PARK  Heung-Sik TAE  

     
    LETTER-Electronic Displays

      Vol:
    E91-C No:2
      Page(s):
    244-248

    This paper proposes a new reset driving waveform to widen the driving margin under a low address voltage in AC-PDPs. The proposed reset waveform alters the wall charge distribution between the X-Y electrodes by applying an X-ramp bias prior to an address-period, thereby lowering the minimum level of the scan pulse (ΔVy) during an address-period without any misfiring discharge in the off-cells. When adopting the proposed reset waveform, the address discharge time delay is reduced by about 200 ns at an address voltage of 35 V, while the related dynamic driving margin is wide under a low address voltage condition. The related phenomena are also examined using the Vt close-curve method.

  • Bipolar Scan Waveform for Fast Address in AC Plasma Display Panel

    Ki-Duck CHO  Heung-Sik TAE  Sung-Il CHIEN  

     
    LETTER-Electronic Displays

      Vol:
    E87-C No:1
      Page(s):
    116-119

    A new bipolar scan waveform is proposed to increase the light emission duty factor by achieving the fast address in AC plasma display panel (AC-PDP). The new bipolar scan waveform consists of two-step scan pulse, which can separate the address discharge mode into two different discharge modes: a space charge generation mode and a wall charge accumulation mode. By adopting the new bipolar scan waveform, the light emission duty factor is increased considerably under the single scan ADS driving scheme due to the reduction of address time per single subfield.

  • New Multi-Luminance-Level Subfield Method for Reducing Low Gray-Level Contour in AC Plasma Display Panel

    Ki-Duck CHO  Heung-Sik TAE  Sung-Il CHIEN  

     
    LETTER-Electronic Displays

      Vol:
    E86-C No:4
      Page(s):
    682-685

    A new multi-luminance-level subfield method is proposed to reduce the low gray-level contour of an alternate current plasma display panel (AC-PDP). The minimum or maximum luminance level per sustain-cycle can be altered by simultaneously applying the proper auxiliary short pulses. As a result, the multi-luminance levels per one or two sustain pulse pairs can be expressed by properly adjusting the auxiliary short pulses for the one or two sustain-cycle subfields, thereby suppressing a low gray-level contour of AC-PDP.

  • ICCD Observation on Discharge Characteristics in AC Plasma Display Panel Prepared by Vacuum Sealing Process

    Choon-Sang PARK  Heung-Sik TAE  

     
    LETTER-Electronic Displays

      Vol:
    E92-C No:6
      Page(s):
    898-901

    The vacuum sealing process with a base vacuum of 10-5 Torr is adopted to minimize the residual impurity gas. The address and sustain discharges in the 42-in PDP prepared by the vacuum-sealing process are observed by using the ICCD. As a result, the ICCD observation illustrates that thanks to the reduction of the impurity level by the vacuum-sealing process, the surface and plate-gap discharges are initiated and extinguished very fast and the corresponding IR emissions are also intensified.

  • New Cost-Effective Driving Circuit for Plasma-TV

    Jae Kwang LIM  Heung-Sik TAE  Dong-Ho LEE  Kazuhiro ITO  Jung Pil PARK  

     
    PAPER-Electronic Displays

      Vol:
    E93-C No:2
      Page(s):
    200-204

    Unlike the conventional plasma-TVs using the driving circuit with two polarities during the reset and address periods, the cost-effective driving circuit using only the positive voltage level during the reset and address periods is proposed and implemented in the 42-in. plasma-TV.

  • New Ramped-Square Sustain Waveform for Improving Luminance and Luminous Efficiency of an AC Surface-Discharge Plasma Display Panel

    Heung-Sik TAE  Ki-Duck CHO  Sang-Hun JANG  Jeong-Hae LEE  

     
    PAPER-Plasma Displays

      Vol:
    E84-C No:11
      Page(s):
    1653-1658

    A new ramped-square sustain waveform is proposed to improve both the luminance and the luminous efficiency of an alternate current plasma display panel (ac PDP). The luminous characteristics such as the luminance and luminous efficiency have been measured with a square-voltage and a ramp-voltage (or voltage slope) of the proposed sustain pulse. With an increase in the square-voltage of a ramped-square sustain waveform, the luminance increases but the luminous efficiency decreases. On the other hand, with an increase in the ramp-voltage of a ramped-square sustain waveform, both the luminance and the luminous efficiency increase. When compared with the conventional square sustain waveform, an improved luminance of 22% and luminous efficiency of 36% are simultaneously obtained based on the proper adjustment of the square-voltage and ramp-voltage of the ramped-square sustain waveform in a 4-inch ac PDP test panel at a frequency of 62 kHz.

  • Dual-Slope Ramp Reset Waveform to Improve Dark Room Contrast Ratio in AC PDPs

    Heung-Sik TAE  Jae-Kwnag LIM  Byung-Gwon CHO  

     
    LETTER-Electronic Displays

      Vol:
    E88-C No:12
      Page(s):
    2400-2404

    A new dual-slope ramp (DSR) reset waveform is proposed to improve the dark room contrast ratio in AC-PDPs. The proposed reset waveform has two different voltage slopes during a ramp-up period. The first voltage slope lower than the conventional ramp voltage slope plays a role in producing the priming particles under the low background luminance, which is considered to be a kind of pre-reset discharge. On the other hand, the second voltage slope higher than the conventional ramp voltage slope produces a stable reset discharge due to the presence of the priming particles, but gives rise to a slight increase in the background luminance. Thus, a bias voltage is also applied during a part of the second voltage-slope period to adjust the background luminance and address discharge characteristics. As a result, the proposed dual-slope reset waveform can lower the background luminance without causing the discharge instability, thereby improving the high dark room contrast ratio of an AC-PDP without reducing the address voltage margin.

  • Design of a Multi Beam Feed Using a Nonradiative Dielectric Rotman Lens

    Jae-Gon LEE  Jeong-Hae LEE  Heung-Sik TAE  

     
    PAPER-Antenna and Propagation

      Vol:
    E85-B No:6
      Page(s):
    1178-1184

    In this paper, a rotman lens of multi-beam feed that can be applied to a car collision avoidance radar is designed using nonradiative dielectric (NRD) guide appropriate to the millimeter wave frequency. For the optimum condition, NRD guide at the transmission lines of input and output ports is designed to obtain low loss, small coupling between the transmission lines, and dominant mode operation. The rotman lens is also optimized so as to minimize sidelobe of array factor. To prevent beam pattern from being distorted, multiple-reflection from sidewall has been eliminated by corrugated sidewall.

  • A Study on Temporal Dark Image Sticking in AC-PDP Using Vacuum-Sealing Method

    Choon-Sang PARK  Heung-Sik TAE  

     
    PAPER-Electronic Displays

      Vol:
    E92-C No:1
      Page(s):
    161-165

    Minimizing the residual impurity gases is a key factor for reducing temporal dark image sticking. Therefore, this paper uses a vacuum-sealing method that minimizes the residual impurity gases by enhancing the base vacuum level, and the resultant change in temporal dark image sticking is then examined in comparison to that with the conventional sealing method using 42-in. ac-PDPs with a high Xe (11%) content. As a result of monitoring the difference in the display luminance, infrared emission, and perceived luminance between the cells with and without temporal dark image sticking, the vacuum-sealing method is demonstrated to reduce temporal dark image sticking by decreasing the residual impurity gases and increasing the oxygen vacancy in the MgO layer. Furthermore, the use of a modified driving waveform along with the vacuum-sealing method is even more effective in reducing temporal dark image sticking.

  • New Address Method for Reducing the Address Power Consumption in AC-PDP

    Beong-Ha LIM  Gun-Su KIM  Dong-Ho LEE  Heung-Sik TAE  Seok-Hyun LEE  

     
    PAPER-Electronic Displays

      Vol:
    E97-C No:8
      Page(s):
    820-827

    This paper proposes a new address method to reduce the address power consumption in an AC plasma panel display (AC-PDP). We apply an overlap scan method, in which the scan pulse overlaps with those of the previous scan time and the next scan time. The overlap scan method decreases the address voltage and consequently reduces the address power consumption. However, the drawback of this method is the narrow address voltage margin. This occurs because the maximum address voltage decreases much more than the minimum address voltage does. In order to increase the address voltage margin, we apply a two-step address voltage waveform, in the overlap scan method. In this case, the maximum address voltage increases; however, the minimum address voltage is almost the same. This leads to a wide address voltage margin. Moreover, the two-step address voltage waveform reduces the address power consumption, because the address voltage rises and falls in two steps using an energy recovery capacitor. Consequently, the experimental results show that the new address method reduces the address power consumption by 19.6,Wh (58%) when compared with the conventional method.

  • Effects of Address-on-Time on Wall Voltage Variation during Address-Period in AC Plasma Display Panel

    Byung-Tae CHOI  Hyung Dal PARK  Heung-Sik TAE  

     
    PAPER

      Vol:
    E92-C No:11
      Page(s):
    1347-1352

    To explain the variation of the address discharge during an address period, the wall voltage variation during an address period was investigated as a function of the address-on-time by using the Vt closed curves. It was observed that the wall voltage between the scan and address electrodes was decreased with an increase in the address-on-time. It was also observed that the wall voltage variation during an address period strongly depended on the voltage difference between the scan and address electrodes. Based on this result, the modified driving waveform to raise the level of Vscanw, was proposed to minimize the voltage difference between the scan and address electrodes. However, the modified driving waveform resulted in the increase in the falling time of scan pulse. Finally, the overlapped double scan waveform was proposed to reduce a falling time of scan pulse under the raised voltage level of Vscanw, also.