The search functionality is under construction.

Author Search Result

[Author] Fuminobu HIDANI(2hit)

1-2hit
  • GaAs 10 Gb/s 64:1 Multiplexer/Demultiplexer Chip Sets

    Masaaki SHIMADA  Norio HIGASHISAKA  Akira OHTA  Kenji HOSOGI  Kazuo KUBO  Noriyuki TANINO  Tadashi TAKAGI  Fuminobu HIDANI  Osamu ISHIHARA  

     
    PAPER

      Vol:
    E79-C No:4
      Page(s):
    503-511

    GaAs 10 Gb/s 64:1 Multiplexer/Demultiplexer chip sets have been successfully developed. The 64-bit 156 Mb/s parallel data output or input of these chip sets can be directly connected to CMOS LSIs. These chip sets consist of a 10Gb/s 4: 1 MUX IC, a 10 Gb/s 1: 4 DEMUX IC, four 2.5 Gb/s 16: 1 MUX LSIs and four 2.5 Gb/s 1: 16 DEMUX LSIs. This multi-chip construction is adopted for low power dissipation and high yield. The basic circuit employed in the 10 Gb/s4: 1 MUX/DEMUX ICs is an SCFL circuit using 0.4 µm-gate FETs with a power supply of -5.2 V, and that in 2.5 Gb/s 16: 1 MUX/DEMUX LSIs is a DCFL circuit using 0.6 µm-gate FETs with a power supply of -2.0 V. These chip sets have functions for synchronization among these ICs and to enable bit shift to make the system design easier. In the 10 Gb/s 4: 1 MUX IC, a timing adjuster is adopted. This timing adjuster can delay the timing of the most critical path by 50 ps. Even if the delay times are out of order due to fluctuations in process, temperature, power supply voltage and other factors, this timing can be revised and the 4: 1 MUX IC can operate at 10 Gb/s. Furthermore, a 48-pin quad flat package for 10 Gb/s 4: 1 MUX/DEMUX ICs has been newly developed. The measured insertion loss is 1.7 dB (at 10 GHz), and the isolation is less than -20 dB (at 10 GHz). These values are sufficient in practical usage. Measurements of these chip sets show desirable performance at the target 10 Gb/s. The power dissipations of the 64: 1 MUX/DEMUX chip sets are 10.3 W and 8.2 W, respectively. These chip sets is expected to contribute to high speed telecommunication systems.

  • A Fully Integrated 6.25% Pull-in Range Digital PLL for ISDN Primary Rate Interface LSI

    Harufusa KONDOH  Seiji KOZAKI  Shinya MAKINO  Hiromi NOTANI  Fuminobu HIDANI  Masao NAKAYA  

     
    PAPER

      Vol:
    E75-C No:3
      Page(s):
    280-287

    A fully integrated digital PLL (Phase Locked Loop) with on-chip CMOS oscillator is described. Nominal division number of the variable divider is automatically tuned in this digital PLL and this feature makes it possible to widen the pull-in range. In general, output jitter may increase if the pull-in range is widened. To overcome this problem, output jitter is reduced by utilizing the dual loop architecture. Wide pull-in range enables us on-chip oscillator, which is not so precise as the expensive crystal oscillator. This CMOS oscillator must be carefully designed to be stable against the temperature and the supply voltage variations. Using these digital PLL techniques, together with the on-chip CMOS oscillator, a fully integrated PLL can be achieved. Circuits are designed for 1.544 Mbit/s ISDN primary rate interface, and 6.25% pull-in range is obtained.