The search functionality is under construction.

Author Search Result

[Author] Hideki YAMAUCHI(2hit)

1-2hit
  • A Single-Chip JPEG2000 Encode Processor Capable of Compressing D1-Images at 30 frames/s without Tile Division

    Hideki YAMAUCHI  Shigeyuki OKADA  Kazuhiko TAKETA  Tatsushi OHYAMA  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    448-456

    A VLSI-specific wavelet processing technique has been developed and implemented as a processor in accordance with the JPEG2000 specification. This proposed procedure of discrete wavelet transforms uses an altered calculation equations and makes use of intermediate results through wavelet calculation. The implementation of the proposed procedure is capable of realizing a highly efficient DWT for large size images in spite of using low hardware costs and a small size buffering memory. In order to obtain fast EBCOT processing, three types of parallel processing are introduced in the EBCOT architecture. The processor performs compression of 720480 pixels images with the speed of 30 frames per second (fps) at a required operating frequency as low as 32 MHz or lower. Furthermore, it need not divide an image into tiles so that the problem of deterioration of image quality due to tile division does not occur. A prototype of this processor has been fabricated in a 0.25-µm 5-layer CMOS process. The chip is 10.210.4 mm2 in size and consumes 2.0 W when supplied with 2.5 V and 32 MHz.

  • VLSI Architecture for Real-Time Fractal Image Coding Processors

    Hideki YAMAUCHI  Yoshinori TAKEUCHI  Masaharu IMAI  

     
    PAPER

      Vol:
    E83-A No:3
      Page(s):
    452-458

    This paper proposes an efficient architecture for fractal image coding processors. The proposed architecture achieves high-speed image coding comparable to conventional JPEG processing. This architecture achieves less than 33.3 msec fractal image compression coding against a 512 512 pixel image and enables full-motion fractal image coding. The circuit size of the proposed architecture design is comparable to those of JPEG processors and much smaller than those of previously proposed fractal processors.