The search functionality is under construction.

Author Search Result

[Author] Hideyuki SHINONAGA(11hit)

1-11hit
  • Multiple Symbol Differential Detection with Majority Decision Method for DQPSK in LOS Channel

    Hiroyasu ISHIKAWA  Hideyuki SHINONAGA  

     
    LETTER-Satellite Communications

      Vol:
    E96-B No:1
      Page(s):
    384-388

    This letter proposes a multiple symbol differential detection (MSDD) with majority decision method for differentially coded quadrature phase-shift keying (DQPSK) in Rician fading channels. The proposed method shows better BER performance than the conventional MSDD. Simulation results show that the proposed MSDD with a majority decision method improves the system's BER performance for DQPSK signals under the AWGN channel and it approaches asymptotically the theoretical BER performance of coherent detection. Furthermore, the proposed method shows better BER performance under the Rician fading channel with large frequency offsets especially for the range of C/M > 12 dB in comparison with the conventional MSDD.

  • Time-Dependent GES Assignment Method for Non-GSO Satellite Systems

    Noriyuki ARAKI  Hideyuki SHINONAGA  

     
    PAPER-System Technology

      Vol:
    E80-B No:1
      Page(s):
    87-92

    This paper proposes a time-dependent gateway earth station (GES) assignment method for a user terminal in non-geostationary orbiting satellite systems. Time-dependent nature of the GES service area is first discussed for an example intermediate circular orbit system. Then, the time-dependent GES assignment method is proposed. Finally, the advantage of the proposed method is shown by several calculation results.

  • Proposal of Instantaneous Power-Line Frequency Synchronized Superimposed Chart for Communications Quality Evaluation of broadband PLC System Open Access

    Kenji KITA  Hiroshi GOTOH  Hiroyasu ISHIKAWA  Hideyuki SHINONAGA  

     
    PAPER-Network

      Pubricized:
    2019/07/18
      Vol:
    E103-B No:1
      Page(s):
    60-70

    Power line communications (PLC) is a communication technology that uses a power-line as a transmission medium. Previous studies have shown that connecting an AC adapter such as a mobile phone charger to the power-line affects signal quality. Therefore, in this paper, the authors analyze the influence of chargers on inter-computer communications using packet capture to evaluate communications quality. The analysis results indicate the occurrence of a short duration in which packets are not detected once in a half period of the power-line supply: named communication forbidden time. For visualizing the communication forbidden time and for evaluating the communications quality of the inter-computer communications using PLC, the authors propose an instantaneous power-line frequency synchronized superimposed chart and its plotting algorithm. Further, in order to analyze accurately, the position of the communication forbidden time can be changed by altering the initial burst signal plotting position. The difference in the chart, which occurs when the plotting start position changes, is also discussed. We show analysis examples using the chart for a test bed data assumed an ideal environment, and show the effectiveness of the chart for analyzing PLC inter-computer communications.

  • Maximum Positioning Error Estimation Method for Detecting User Positions with Unmanned Aerial Vehicle based on Doppler Shifts Open Access

    Hiroyasu ISHIKAWA  Yuki HORIKAWA  Hideyuki SHINONAGA  

     
    PAPER

      Pubricized:
    2020/05/08
      Vol:
    E103-B No:10
      Page(s):
    1069-1077

    In the typical unmanned aircraft system (UAS), several unmanned aerial vehicles (UAVs) traveling at a velocity of 40-100km/h and with altitudes of 150-1,000m will be used to cover a wide service area. Therefore, Doppler shifts occur in the carrier frequencies of the transmitted and received signals due to changes in the line-of-sight velocity between the UAVs and the terrestrial terminal. By observing multiple Doppler shift values for different UAVs or observing a single UAV at different local times, it is possible to detect the user position on the ground. We conducted computer simulations for evaluating user position detection accuracy and Doppler shift distribution in several flight models. Further, a positioning accuracy index (PAI), which can be used as an index for position detection accuracy, was proposed as the absolute value of cosine of the inner product between two gradient vectors formed by Doppler shifts to evaluate the relationship between the location of UAVs and the position of the user. In this study, a maximum positioning error estimation method related to the PAI is proposed to approximate the position detection accuracy. Further, computer simulations assuming a single UAV flying on the curved routes such as sinusoidal routes with different cycles are conducted to clarify the effectiveness of the flight route in the aspects of positioning accuracy and latency by comparing with the conventional straight line fight model using the PAI and the proposed maximum positioning error estimation method.

  • Recent Japanese R&D in Satellite Communications Open Access

    Masahiro UMEHIRA  Kiyoshi KOBAYASHI  Yoshitsugu YASUI  Masato TANAKA  Ryutaro SUZUKI  Hideyuki SHINONAGA  Nobuyuki KAWAI  

     
    INVITED PAPER

      Vol:
    E92-B No:11
      Page(s):
    3290-3299

    Current trend in telecommunications is "broadband" and "ubiquitous." To achieve this goal, satellite communications systems are expected to play an important role in cooperation with terrestrial communications systems. Along with the advancement of optical fiber transmission systems, the role of satellite communications was dramatically changed from long distance transmission to various applications utilizing unique features of satellite communications. This paper overviews recent Japanese R&D in satellite communications.

  • Method for Detecting User Positions with Unmanned Aerial Vehicles Based on Doppler Shifts

    Hiroyasu ISHIKAWA  Hiroki ONUKI  Hideyuki SHINONAGA  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    195-204

    Unmanned aircraft systems (UASs) have been developed and studied as temporal communication systems for emergency and rescue services during disasters, such as earthquakes and serious accidents. In a typical UAS model, several unmanned aerial vehicles (UAVs) are used to provide services over a large area. The UAV is comprised of a transmitter and receiver to transmit/receive the signals to/from terrestrial stations and terminals. Therefore, the carrier frequencies of the transmitted and received signals experience Doppler shifts due to the variations in the line-of-sight velocity between the UAV and the terrestrial terminal. Thus, by observing multiple Doppler shifts from different UAVs, it is possible to detect the position of a user that possesses a communication terminal for the UAS. This study aims to present a methodology for position detection based on the least-squares method to the Doppler shift frequencies. Further, a positioning accuracy index is newly proposed, which can be used as an index for measuring the position accurately, instead of the dilution-of-precision (DOP) method, which is used for global positioning systems (GPSs). A computer simulation was conducted for two different flight route models to confirm the applicability of the proposed positioning method and the positioning accuracy index. The simulation results confirm that the parameters, such as the flight route, the initial position, and velocity of the UAVs, can be optimized by using the proposed positioning accuracy index.

  • Carrier Frequency Offset-Spread Spectrum (CFO-SS) Method for Wireless LAN System Using 2.4 GHz ISM Band

    Hiroyasu ISHIKAWA  Hideyuki SHINONAGA  Hideo KOBAYASHI  

     
    PAPER

      Vol:
    E80-A No:12
      Page(s):
    2366-2371

    A wireless communications system with a transmission rate of 10 Mbit/s using Japanese ISM band (2471-2497 MHz) is presented. This system employs a novel spread spectrum multiple access method named "CFO-SS (Carrier Frequency Offset-Spread Spectrum)" method. In the CFO-SS system, a single PN code is commonly assigned to all the multiple carriers, and the frequency offset between the carriers is determined by the information symbol rate, which is small as compared with the spread bandwidth of the signal. Bit error rate performance of the proposed CFO-SS system under multipath environments is investigated by computer simulation, and the performance of the CFO-SS method is confirmed for wireless LAN systems using the 2.4 GHz ISM band.

  • FOREWORD Open Access

    Hideyuki SHINONAGA  

     
    FOREWORD

      Vol:
    E92-B No:11
      Page(s):
    3289-3289
  • 18 Mbit/s Carrier Frequency Offset-Spread Spectrum (CFO-SS) System Using 2.4 GHz ISM Band

    Hiroyasu ISHIKAWA  Naoki FUKE  Keizo SUGIYAMA  Hideyuki SHINONAGA  

     
    PAPER

      Vol:
    E85-A No:12
      Page(s):
    2839-2846

    A wireless communications system with a transmission speed of 18 Mbit/s is presented using the 2.4 GHz ISM band. This system employs the Carrier Frequency Offset-Spread Spectrum (CFO-SS) scheme and the Dual-Polarization Staggered Transmission (DPST) scheme. The 18 Mbit/s CFO-SS system (named CFO-SS18) was developed and its performance evaluated in fields. In this paper, the detailed operating principle of CFO-SS and DPST schemes, together with the specifications and structures of CFO-SS18, are presented. Results of indoor and field tests obtained by using CFO-SS18 are also presented.

  • Design of Carrier Frequency Offset-Spread Spectrum (CFO-SS) System Using 2.4 GHz ISM Band

    Hiroyasu ISHIKAWA  Hideyuki SHINONAGA  

     
    PAPER

      Vol:
    E82-A No:12
      Page(s):
    2669-2676

    Design of wireless communications systems with a transmission rate of 6 and 10 Mbit/s is presented for the 2.4 GHz Japanese ISM band, in which a spread spectrum technique named "CFO-SS (Carrier Frequency Offset-Spread Spectrum)" scheme is employed. In the CFO-SS system, a single PN code is commonly assigned to all the synchronized multiplexed carriers, and the frequency separation between carriers is determined by the transmission rate of each carrier. To realize the CFO-SS system, a timing acquisition and tracking scheme, an important part of the design, is presented first. Next, bit and packet error performance is investigated under severe multipath environments with/without a RAKE receiver. Degradation by channel bandwidth limitations, frequency inaccuracy of the hardware and co-channel interference (CCI) is also investigated by computer simulation. Simulation results presented confirmed sufficient performance of the CFO-SS system for wireless LAN systems using the 2.4 GHz ISM band.

  • Experimental Results of Future Road-to-Vehicle Communications System with Handover Function

    Tadayuki FUKUHARA  Kenya YONEZAWA  Hiroyasu ISHIKAWA  Keizo SUGIYAMA  Hideyuki SHINONAGA  

     
    PAPER

      Vol:
    E87-A No:10
      Page(s):
    2649-2656

    This paper presents experimental results of a future road-to-vehicle communications system with handover function. The proposed handover scheme, based on the current Dedicated Short Range Communication System (DSRC) standard (ARIB STD-T75) in Japan, maintains the continuity of data transmissions over multiple radio zones by transferring received and remaining data between base stations located along the roadside. Moreover, a link connection/disconnection method is newly proposed to avoid repetition of link connection and disconnections around the cell entrance and to actualize smooth handover between cells. The proposed method determines the link connection and disconnection timing by measuring the received signal strength and observing the results of CRC (Cyclic Redundancy Code) error checks of the control channel. By applying the proposed method to mobile stations (MS) in the DSRC system, the communication link between the MS and the base station (BS) can be smoothly connected. Field experiments were conducted to evaluate the performance and validity of the proposed methods using actual equipment. Experimental results show that the proposed methods perform a smooth link connection between cells and achieve a very short handover processing delay of less than 42 milliseconds.