The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hiromitsu HADA(3hit)

1-3hit
  • TiN as a Phosphorus Outdiffusion Barrier Layer for WSix/Doped-Polysilicon Structures

    John M. DRYNAN  Hiromitsu HADA  Takemitsu KUNIO  

     
    PAPER-Process Technology

      Vol:
    E76-C No:4
      Page(s):
    613-625

    Phosphorus-doped amorphous or polycrystalline silicon can yield a conformal, low resistance, thermallystable plug for the high-aspect-ratio, sub-half-micron contactholes found in current development prototypes of future 64 and 256 Mega-bit DRAMs. When directly contacted to a silicide layer, however, such as WSix found in polycide gate or bit line metallization/contact structures, the outdiffusion of phosphorus from the doped-silicon layer into the silicide can occur, resulting in an increase in resistance. The characteristics of both the doped-silicon and WSix layers influence the outdiffusion. The grain size of the doped silicon appears to control diffusion at the WSix/doped-silicon interface while the transition of WSix from an as-deposited amorphous to a post-annealed polycrystalline state appears to help cause uniform phosphorus diffusion throughout the silicide film. The results of phosphorus pre-doping of the silicide to reduce the effects of outdiffusion are dependent upon the relative material volumes and interfacial areas of the layers. Due to the effectiveness of the TiN barrier layer/Ti contact layer structure used in Al-based contacts, Ti and TiN were evaluated on their ability to prevent phosphorus outdiffusion. Ti reacts easily with doped silicon and to some extent with WSix, thereby allowing phosphorus to outdiffuse through the TiSix into the overlying WSix. TiN, however, is very effective in preventing phosphorus outdiffusion and preserving polycide interface smoothness. A WSix/TiN/Ti metallization layer on an in situ-doped (ISD) silicon layer with ISD silicon-plugged contactholes yields contact resistances comparable to P+-implanted or non-implanted WSix layers on similar ISD layers/plugs for contact sizes greater than approximately 0.5 µm but for contacts of 0.4 µm or below the trend in contact resistance is lowest for the polycide with TiN barrier/Ti contact interlayers. A 20 nm-thick TiN film retains its barrier characteristics even after a 4-hour 850 anneal and is applicable to the silicide-on-doped-silicon structures of future DRAM and other ULSI devices.

  • MRAM Writing Circuitry to Compensate for Thermal Variation of Magnetization Reversal Current

    Takeshi HONDA  Noboru SAKIMURA  Tadahiko SUGIBAYASHI  Hideaki NUMATA  Sadahiko MIURA  Hiromitsu HADA  Shuichi TAHARA  

     
    PAPER-Circuit Design

      Vol:
    E86-C No:4
      Page(s):
    612-617

    MRAM-writing circuitry to compensate for the thermal variation of the magnetization-reversal current is proposed. The writing current of the proposed circuitry is designed to decrease in proportion to an increase in temperature. This technique prevents multiple-write failures from degrading 1 Gb MRAM yield where the standard deviation of magnetization-reversal current variation from other origins is less than 5%.

  • Writing Circuitry for Toggle MRAM to Screen Intermittent Failure Mode

    Takeshi HONDA  Noboru SAKIMURA  Tadahiko SUGIBAYASHI  Naoki KASAI  Hiromitsu HADA  Shu-ichi TAHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E90-C No:2
      Page(s):
    531-535

    We propose a writing circuit scheme to screen intermittent failure cells for toggle MRAM. The scheme, comprising a current waveform circuitry that controls rise/fall time of writing current, drastically decreases the probability of intermittent failure. To apply the scheme to large-capacity MRAMs, a current booster containing discharging capacitors has also been developed. It adjusts the waveform of writing current to that designed by the current waveform circuitry even in presence of parasitic capacitors and resistors along the writing current path. Such a technique is essential for achieving stability in large-capacity MRAMs.