The search functionality is under construction.

Author Search Result

[Author] Hisakazu KIKUCHI(54hit)

21-40hit(54hit)

  • Distribution of ISR and Its Optimization in Performance Evaluation of Forward Link in Cellular Mobile Radio Systems

    Jie ZHOU  Yoshikuni ONOZATO  Hisakazu KIKUCHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:8
      Page(s):
    1479-1489

    In CDMA systems, power control strategy is the most important issue since the capacity of the system is only interference-limited. For a better understanding of the effects of Forward Link Power Control Strategy (FLPCS) on the outage probability in fading environments, this paper has presented a theoretical analysis of forward link in a CDMA cellular system by introducing the τ-th power of distance driven control strategy. Based on the power control, the capacity and outage probability of the system are estimated and discussed. In particular, we consider the impact of fading environments and investigate the "hole" phenomenon. Based on our numerical results, the "hole" points are at the upper bounds of where it is possible to ensure minimization of the maximum value of total Interference-to-Signal Ratio (ISR). At those upper bound points, at least, the power control strategy leads to approximately threefold the capacity compared to the case without power control strategy. It can be concluded that the forward link without power control strategy is a very heavy restriction for the capacity of the CDMA system, especially in environments of significant fading.

  • Evaluation of Selective Rake Receiver in Direct Sequence Ultra Wideband Communications

    Mohammad Azizur RAHMAN  Shigenobu SASAKI  Jie ZHOU  Shogo MURAMATSU  Hisakazu KIKUCHI  

     
    LETTER-Mobile Communication

      Vol:
    E87-A No:7
      Page(s):
    1742-1746

    Performance of selective Rake (SRake) receiver is evaluated for direct sequence ultra wideband (DS-UWB) communications considering an independent Rayleigh channel having exponentially decaying power delay profile (PDP). BEP performances are shown. The results obtained are compared with similar results in a channel having flat PDP. Assumption of a flat PDP is found to predict the optimum spreading bandwidth to be lower and sub-optimum operating performance beyond optimum spreading bandwidth to be severely worse than that is achievable in a channel having exponentially decaying PDP by employing an SRake receiver having fixed number of combined paths. Optimum spreading bandwidth for SRake in a channel having exponentially decaying PDP is shown to be much larger than the one in a channel having flat PDP; that is specifically a good-news for UWB communications. Effects of partial band interference are also investigated. Interference is found to be less effective in exponentially decaying PDP.

  • Error Performance of DS-CDMA over Multipath Channel Using Selective Rake Receiver

    Mohammad Azizur RAHMAN  Shigenobu SASAKI  Jie ZHOU  Hisakazu KIKUCHI  

     
    LETTER

      Vol:
    E88-A No:11
      Page(s):
    3118-3122

    Error performance of DS-CDMA is discussed over independent Rayleigh faded multipath channel employing selective Rake (SRake) receiver. Simple-to-evaluate and accurate error probabilities are given following Holtzman's simplified improved Gaussian approximation (SIGA). Comparing with SIGA, the validity of standard Gaussian approximation (SGA) is then verified. It is shown that SGA is accurate for SRake until some number of combined paths beyond which it becomes optimistic. It is also shown that as compared to single user performance, the SRake performance is relatively less degraded by multiple access interference (MAI) while the number of combined paths is small.

  • A New Color Demosaicing Method Using Asymmetric Average Interpolation and Its Iteration

    Yoshihisa TAKAHASHI  Hisakazu KIKUCHI  Shogo MURAMATSU  Yoshito ABE  Naoki MIZUTANI  

     
    PAPER-Image

      Vol:
    E88-A No:8
      Page(s):
    2108-2116

    This paper presents a color demosaicing method by introducing iterative asymmetric average interpolation. Missing primary colors on a Bayer pattern color filter array (CFA) are estimated by an asymmetric average interpolation where less intensity variation is assumed to be of stronger significance, before sharpness of an initial estimate is further improved by an iterative procedure. The iteration is implemented by an observation process followed by a restoration process. The former is modeled by blurring followed by CFA sampling and the latter is completely as same as the color demosaicing method initially applied. Experimental results have shown a favorable performance in terms of PSNR and visual appearance, in particular, in sharpness recovery.

  • Performance of Parallel Combinatory SS Communication Systems in Rayleigh Fading Channel

    Shigenobu SASAKI  Hisakazu KIKUCHI   Jinkang ZHU  Gen MARUBAYASHI  

     
    LETTER-Communications

      Vol:
    E77-A No:6
      Page(s):
    1028-1032

    The performance of parallel combinatory spread spectrum (PC/SS) communication systems in the frequency-nonselective, slowly Rayleigh fading channel is studied. Performance is evaluated by symbol error rate using numerical computation. To overcome the performance degradation caused by fading, we also studied the effects of selection diversity and Reed-Solomon coding applied to the PC/SS system. As a result, a remarkable improvement in error rate performance is achieved with Reed-Solomon coding and diversity technique. The coding rate for the maximum coding gain is almost a half of that in the additive white gaussian noise channel.

  • A Parameter Decimation Technique for Variable-Coefficient Invertible Deinterlacing

    Jun UCHITA  Takuma ISHIDA  Shogo MURAMATSU  Hisakazu KIKUCHI  Tetsuro KUGE  

     
    PAPER

      Vol:
    E87-A No:6
      Page(s):
    1363-1370

    In this paper, a coefficient-parameter reduction method is proposed for invertible deinterlacing with variable coefficients. Invertible deinterlacing, which the authors have developed before, can be used as a preprocess of frame-based motion picture codec, such as Motion-JPEG2000 (MJP2), for interlaced videos. When the conventional field-interleaving is used instead, comb-tooth artifacts appear around edges of moving objects. On the other hand, the invertible deinterlacing technique allows us to suppress the comb-tooth artifacts and also to recover an original picture on demand. As previous works, the authors have developed a variable coefficient scheme with a motion detection filter, which realizes adaptability to local characteristics of given pictures. When applying this deinterlacing technique to an image codec, it is required to send coefficient parameters to receivers for original picture recovery. This work proposes a parameter decimation technique and shows that this reduction approach can be achieved without significant loss of comb-tooth suppression capability and improves the quality at high bit-rate decoding.

  • Exact Error Rate Analysis for Pulsed DS- and Hybrid DS/TH-CDMA in Nakagami Fading

    Mohammad Azizur RAHMAN  Shigenobu SASAKI  Hisakazu KIKUCHI  Hiroshi HARADA  Shuzo KATO  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3150-3162

    Exact bit error probabilities (BEP) are derived in closed-form for binary pulsed direct sequence (DS-) and hybrid direct sequence time hopping code division multiple access (DS/TH-CDMA) systems that have potential applications in ultra-wideband (UWB) communications. Flat Nakagami fading channel is considered and the characteristic function (CF) method is adopted. An exact expression of the CF is obtained through a straightforward method, which is simple and good for any arbitrary pulse shape. The CF is then used to obtain the exact BEP that requires less computational complexity than the method based on improved Gaussian approximation (IGA). It is shown under identical operating conditions that the shape of the CF, as well as, the BEP differs considerably for the two systems. While both the systems perform comparably in heavily faded channel, the hybrid system shows better BEP performance in lightly-faded channel. The CF and BEP also strongly depend on chip length and chip-duty that constitute the processing gain (PG). Different combinations of the parameters may result into the same PG and the BEP of a particular system for a constant PG, though remains nearly constant in a highly faded channel, may vary substantially in lightly-faded channel. A comparison of the results from the exact method with those from the standard Gaussian approximation (SGA) reveals that the SGA, though accurate for both the systems in highly-faded channel, becomes extremely optimistic for low-duty systems in lightly-faded channel. The SGA also fails to track several other system trade-offs.

  • Lossless-by-Lossy Coding for Scalable Lossless Image Compression

    Kazuma SHINODA  Hisakazu KIKUCHI  Shogo MURAMATSU  

     
    PAPER-Image

      Vol:
    E91-A No:11
      Page(s):
    3356-3364

    This paper presents a method of scalable lossless image compression by means of lossy coding. A progressive decoding capability and a full decoding for the lossless rendition are equipped with the losslessly encoded bit stream. Embedded coding is applied to large-amplitude coefficients in a wavelet transform domain. The other wavelet coefficients are encoded by a context-based entropy coding. The proposed method slightly outperforms JPEG-LS in lossless compression. Its rate-distortion performance with respect to progressive decoding is close to that of JPEG2000. The spatial scalability with respect to resolution is also available.

  • A New Scheme of Distributed Video Coding Based on Compressive Sensing and Intra-Predictive Coding

    Shin KURIHARA  Suguru HIROKAWA  Hisakazu KIKUCHI  

     
    PAPER

      Pubricized:
    2017/06/14
      Vol:
    E100-D No:9
      Page(s):
    1944-1952

    Compressive sensing is attractive to distributed video coding with respect to two issues: low complexity in encoding and low data rate in transmission. In this paper, a novel compressive sensing-based distributed video coding system is presented based on a combination of predictive coding and Wyner-Ziv difference coding of compressively sampled frames. Experimental results show that the data volume in transmission in the proposed method is less than one tenth of the distributed compressive video sensing. The quality of decoded video was evaluated in terms of PSNR and structural similarity index as well as visual inspections.

  • Fast Wavelet Transform and Its Application to Detecting Detonation

    Hisakazu KIKUCHI  Makoto NAKASHIZUKA  Hiromichi WATANABE  Satoru WATANABE  Naoki TOMISAWA  

     
    PAPER

      Vol:
    E75-A No:8
      Page(s):
    980-987

    Fast wavelet transform is presented for realtime processing of wavelet transforms. A processor for the fast wavelet transform is of the frequency sampling structure in architectural level. The fast wavelet transform owes its parallelism both to the frequency sampling structure and parallel tapping of a series of delay elements. Computational burden of the fast transform is hence independent of specific scale values in wavelets and the parallel processing of the fast transform is readily implemented for real-time applications. This point is quite different from the computation of wavelet transforms by convolution. We applied the fast wavelet transform to detecting detonation in a vehicle engine for precise real-time control of ignition advancement. The prototype wavelet for this experiment was the Gaussian wavelet (i.e. Gabor function) which is known to have the least spread both in time and in frequency. The number of complex multiplications needed to compute the fast wavelet transform over 51 scales is 714 in this experiment, which is less than one tenth of that required for the convolution method. Experimental results have shown that detonation is successfully detected from the acoustic vibration signal picked up by a single knock sensor embedded in the outer wall of a V/8 engine and is discriminated from other environmental mechanical vibrations.

  • A New Image Coding Technique with Low Entropy Using a Flexible Zerotree

    Sanghyun JOO  Hisakazu KIKUCHI  Shigenobu SASAKI  Jaeho SHIN  

     
    PAPER-Source Encoding

      Vol:
    E81-B No:12
      Page(s):
    2528-2535

    A zerotree image-coding scheme is introduced that effectively exploits the inter-scale self-similarities found in the octave decomposition by a wavelet transform. A zerotree is useful for efficiently coding wavelet coefficients; its efficiency was proved by Shapiro's EZW. In the EZW coder, wavelet coefficients are symbolized, then entropy-coded for further compression. In this paper, we analyze the symbols produced by the EZW coder and discuss the entropy for a symbol. We modify the procedure used for symbol-stream generation to produce lower entropy. First, we modify the fixed relation between a parent and children used in the EZW coder to raise the probability that a significant parent has significant children. The modified relation is flexibly modified again based on the observation that a significant coefficient is more likely to have significant coefficients in its neighborhood. The three relations are compared in terms of the number of symbols they produce.

  • Forward Link Performance of Data Packet Transmission in an Aeronautical CDMA Cellular System

    Jie ZHOU  Kenta ISHIZAWA  Hisakazu KIKUCHI  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E88-B No:2
      Page(s):
    826-830

    Since the interference is quite related to the performance of CDMA cellular systems, it is necessary to estimate Other-Cell-Interference Factor (OCIF). Here, starting from OCIF calculation for an aeronautical communication system, we investigate the forward link performance of data packet transmission in which the capacity, throughput and delay of the system are measured. To the numerical results, one can see that the performance of the aeronautical communication system is worse than that for terrestrial cellular systems and also depends logarithmically on both the cell radius and height.

  • Parameter Embedding in Motion-JPEG2000 through ROI for Variable-Coefficient Invertible Deinterlacing

    Jun UCHITA  Shogo MURAMATSU  Takuma ISHIDA  Hisakazu KIKUCHI  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E89-D No:11
      Page(s):
    2794-2801

    In this paper, a coefficient-parameter embedding method into Motion-JPEG2000 (MJP2) is proposed for invertible deinterlacing with variable coefficients. Invertible deinterlacing, which the authors have developed before, can be used as a preprocess of frame-based motion picture codec, such as MJP2, for interlaced videos. When the conventional field-interleaving is used instead, comb-tooth artifacts appear around edges of moving objects. On the other hand, the invertible deinterlacing technique allows us to suppress the comb-tooth artifacts and also guaranties recovery of original pictures. As previous works, the authors have developed a variable coefficient scheme with a motion detector, which realizes adaptability to local characteristics of given pictures. However, when this deinterlacing technique is applied to a video codec, coefficient parameters have to be sent to receivers for original picture recovery. This paper proposes a parameter-embedding technique in MJP2 and constructs a standard stream which consists both of picture data and the parameters. The parameters are embedded into the LH1 component of wavelet transform domain through the ROI (region of interest) function of JPEG2000 without significant loss in the performance of comb-tooth suppression. Some experimental results show the feasibility of our proposed scheme.

  • Edge-Based Image Synthesis Model and Its Synthesis Function Design by the Wavelet Transform

    Makoto NAKASHIZUKA  Hidetoshi OKAZAKI  Hisakazu KIKUCHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E85-A No:1
      Page(s):
    210-221

    In this paper, a new image synthesis model based on a set of wavelet bases is proposed. In the proposed model, images are approximated by the sum of synthesis functions that are translated to image edge positions. By applying the proposed model to sketch-based image coding, no iterative image recovery procedure is required for image decoding. In the design of the synthesis functions, we define the synthesis functions as a linear combination of wavelet bases. The coefficients for wavelet bases are obtained from an iterative procedure. The vector quantization is applied to the vectors of the coefficients to limit the number of the synthesis functions. We apply the proposed synthesis model to the sketch-based image coding. Image coding experiments by eight synthesis functions and a comparison with the orthogonal transform methods are also given.

  • Iterative Design of Constrained IIR Digital Filters Requiring No Initial Values

    Hisakazu KIKUCHI  Hiromichi WATANABE  Takeshi YANAGISAWA  

     
    PAPER-Circuit Theory

      Vol:
    E69-E No:5
      Page(s):
    601-609

    An iterative design of constrained recursive digital filters is developed. The designing scheme requires no initial values. The constraints are subjected to degrees of both numerator and denominator, transmission zeros and poles, if any, and passband and stopband shaping. The resulting filter completes a prescribed magnitude of either passband or stopband ripples. The optimality property of the filters is examined in detail with emphasis on specifications. The designing scheme involves the elliptic design as a special case. Illustrative examples are also given.

  • Interpolated FIR Filters Based on the Cyclotomic Polynomials

    Hisakazu KIKUCHI  Yoshito ABE  Hiromichi WATANABE  Takeshi YANAGISAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E70-E No:10
      Page(s):
    928-937

    Based on the cyclotomic polynomials, this paper describes a family of efficient and practical interpolators for interpolated FIR filters. The family can be applied to bandpass filters as well as lowpass/highpass filters without any multiplications. It also mitigates the inconvenience to select a practical interpolation factor, and gains a further saving in computational complexity required. Several examples are given to demonstrate the effectiveness for reducing the computational complexity required.

  • Impact of Chip Duty Factor in DS-UWB Systems over Indoor Multipath Environment

    Chin Sean SUM  Shigenobu SASAKI  Hisakazu KIKUCHI  

     
    LETTER

      Vol:
    E89-A No:11
      Page(s):
    3152-3156

    This paper investigates the impact of chip duty factor (DF) in DS-UWB system with Rake receiver over AWGN and UWB indoor multipath environment corresponding to system parameters such as spreading bandwidth and chip length. Manipulating DF in DS-UWB system offers several advantages over multipath channel and thus, capable of improving system performance for better quality of communication. Although employing lower DF generally improves performance, in some exceptional cases on the other hand, degradation can be observed despite decreasing DF. Therefore, the objective of this paper is to clarify the relationship between DF and DS-UWB system performance. We discovered that with constant processing gain and spreading bandwidth, performance improvement can be observed at DF lower than 0.17. Additionally, with spreading bandwidth as tradeoff parameter, significant performance improvement can only be observed below DF of 0.85.

  • FOREWORD

    Hisakazu KIKUCHI  

     
    FOREWORD

      Vol:
    E82-A No:8
      Page(s):
    1385-1385
  • A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading

    Mohammad Azizur RAHMAN  Shigenobu SASAKI  Hisakazu KIKUCHI  Hiroshi HARADA  Shuzo KATO  

     
    LETTER

      Vol:
    E92-B No:5
      Page(s):
    1808-1812

    A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).

  • Equivalent Parallel Structure of Deinterlacer Banks and Its Application to Optimal Bit-Rate Allocation

    Minoru HIKI  Shogo MURAMATSU  Takuma ISHIDA  Hisakazu KIKUCHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:3
      Page(s):
    642-650

    In this paper, theoretical properties of deinterlacer banks are analyzed. Deinterlacer banks are novel filter banks in the sense that a progressive video sequence is separated into two progressive video sequences of a half frame rate and, furthermore, interlaced sequences are produced as intermediate data. Unlike the conventional filter banks, our deinterlacer banks are constructed in a way unique to multidimensional systems by using invertible deinterlacers, which the authors have proposed before. The system is a kind of shift-varying filter banks and it was impossible to derive the optimal bit-allocation control without any equivalent parallel filter banks. This paper derives an equivalent polyphase matrix representation of the whole system and its equivalent parallel structure, and then shows the optimal rate allocation for the deinterlacer banks. Some experimental results justify the effectiveness of the optimal rate allocation through our theoretical analysis.

21-40hit(54hit)