1-2hit |
Hong Bo CHE Jin Wook KIM Tae Il BAE Young Hwan KIM
A new acceleration scheme that decreases the number of required iterations in relaxation methodology is proposed. The proposed scheme uses dynamic error prediction of an improved approximation to the solution during an iterative computation. The proposed scheme's application to circuit simulations required an average of 67.3% fewer iterations compared to un-accelerated relaxation methods.
Hong Bo CHE Hyoun Soo PARK Jin Wook KIM Young Hwan KIM
The authors present R2Power, an effective approach to the realizable reduction of RC networks with independent current sources. The proposed approach is based on the entrywise perturbation theory for diagonally dominant M-matrices. The accuracy of the node voltages of the reduced network, as compared to those of the original network, is maintained on the order of the entrywise perturbation performed during reduction. R2Power can be used to reduce the size of RC networks used to model the power networks of SoCs, for efficient IR-drop analysis. Experiments showed that R2Power reduced the size of industrial examples by more than 95%, with maximum relative node voltage errors of less than 0.012%.