1-2hit |
Jin-Cheon KIM Sang-Hoon LEE Hong-June PARK
A half-swing clocking scheme with a complementary gate and source drive is proposed for a CMOS flip-flop to reduce the power consumption of the clock system by 43%, while keeping the flip-flop delay time the same as that of the conventional full-swing clocking scheme. The delay time of the preceding half stage of a flip-flop using this scheme is less than half of that using the previous half-swing clocking scheme.
Jin-Cheon KIM Sang-Hoon LEE Joo-Hyun LEE Do-Young LEE Won-Chang JUNG Hong-June PARK Im-Soo MOK Hyung-Gyun KIM Ga-Woo PARK
A 32-bit motor-drive-specific microcontroller chip was newly designed, implemented using a 0.8 µm double-metal CMOS process, and its feasibility was successfully tested by applying the fabricated microcontroller chip to a real AC induction motor drive system. The microcontroller chip includes a single-precision floating-point unit, peripheral devices for motor drive, and a memory controller as well as the SPARC V7 CPU. The pipeline scheme and the two-step multiplication method were used in the multiplier of floating-point unit for the best area and speed trade-off, using the standard cell library available for the design. The chip size is 12.7 12.8 mm2, the number of transistors is around 562,000, and the power consumption is 1.69 W at the supply voltage of 5 V and the clock frequency of 30 MHz. Both a standard cell library and a full-custom layout were used in the implementation.