The search functionality is under construction.

Author Search Result

[Author] Kang XI(4hit)

1-4hit
  • A Self-Powered Flyback Pulse Resonant Circuit for Combined Piezoelectric and Thermoelectric Energy Harvesting

    Huakang XIA  Yidie YE  Xiudeng WANG  Ge SHI  Zhidong CHEN  Libo QIAN  Yinshui XIA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2021/06/23
      Vol:
    E105-C No:1
      Page(s):
    24-34

    A self-powered flyback pulse resonant circuit (FPRC) is proposed to extract energy from piezoelectric (PEG) and thermoelectric generators (TEG) simultaneously. The FPRC is able to cold start with the PEG voltage regardless of the TEG voltage, which means the TEG energy is extracted without additional cost. The measurements show that the FPRC can output 102 µW power under the input PEG and TEG voltages of 2.5 V and 0.5 V, respectively. The extracted power is increased by 57.6% compared to the case without TEGs. Additionally, the power improvement with respect to an ideal full-wave bridge rectifier is 2.71× with an efficiency of 53.9%.

  • Packet-Mode Scheduling with Proportional Fairness for Input-Queued Switches

    Kang XI  Shin'ichi ARAKAWA  Masayuki MURATA  Ning GE  Chongxi FENG  

     
    PAPER-Switching for Communications

      Vol:
    E88-B No:11
      Page(s):
    4274-4284

    Proportional fair bandwidth allocation in packet switches is a fundamental issue to provide quality of service (QoS) support in IP networks. In input-queued switches, packet-mode scheduling delivers all the segments of a packet contiguously from the input port to the output port, thus greatly simplifying the design of packet reassembly modules and yielding performance advantage over cell-mode scheduling under certain conditions [1]. One of the important issues of packet-mode scheduling is how to achieve fair bandwidth allocation among flows with different packet sizes. This paper presents an algorithm called packet-mode fair scheduling (pFS) that guarantees each flow a bandwidth proportional to its reservation regardless of the packet size distribution and the system load. Simulations show that our approach achieves good fairness as well as high throughput and low packet delay. Compared to algorithms without fairness mechanism, pFS yields significant performance improvement in terms of average packet delay when the traffic is heterogeneous. A hardware implementation is presented to show that the proposed algorithm has low complexity and the computation can be completed in a single clock cycle, which makes pFS applicable to high-speed switches.

  • Neighbor-Medium-Aware MAC Protocol with Fairness for Wireless Ad Hoc Networks

    Yongkang XIAO  Lin ZHANG  Xiuming SHAN  Yong REN  Zhengxin MA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:9
      Page(s):
    2738-2746

    The unfairness problem among TCP connections has been proved to be very severe in the IEEE 802.11-based wireless ad hoc networks because the hidden station problem still exists and the binary exponential backoff algorithm always favors the latest successful station. In this paper, a novel protocol, neighbor-medium-aware MAC (NEMA-MAC), is proposed to improve the TCP fairness. By adding a medium (channel) state field in the head of the traditional IEEE 802.11 MAC frame, the NEMA-MAC protocol provides a communication mechanism to resolve the hidden station problem. In addition, when a collision occurs, the new backoff algorithm makes the senders cooperatively adjust the contention window according to their local and neighbors' channel usage indexes. The simulation results show that TCP sessions can acquire satisfying fairness and increase the throughput in the NEMA-MAC-based multihop ad hoc networks.

  • Cross-Layer Design Improves TCP Performance in Multihop Ad Hoc Networks

    Yongkang XIAO  Xiuming SHAN  Yong REN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:8
      Page(s):
    3375-3382

    TCP performance in the IEEE 802.11-based multihop ad hoc networks is extremely poor, because the congestion control mechanism of TCP cannot effectively deal with the problem of packet drops caused by mobility and shared channel contention among wireless nodes. In this paper, we present a cross-layer method, which adaptively adjusts the TCP maximum window size according to the number of RTS (Request To Send) retry counts of the MAC layer at the TCP sender, to control the number of TCP packets in the network and thus decrease the channel contention. Our simulation results show that this method can remarkably improve TCP throughput and its stability.