The search functionality is under construction.

Author Search Result

[Author] Keigo NAKATANI(2hit)

1-2hit
  • Overview and Prospects of High Power Amplifier Technology Trend for 5G and beyond 5G Base Stations Open Access

    Koji YAMANAKA  Shintaro SHINJO  Yuji KOMATSUZAKI  Shuichi SAKATA  Keigo NAKATANI  Yutaro YAMAGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-C No:10
      Page(s):
    526-533

    High power amplifier technologies for base transceiver stations (BTSs) for the 5th generation (5G) mobile communication systems and so-called beyond 5G (B5G) systems are reviewed. For sub-6, which is categorized into frequency range 1 (FR1) in 5G, wideband Doherty amplifiers are introduced, and a multi-band load modulation amplifier, an envelope tracking amplifier, and a digital power amplifier for B5G are explained. For millimeter wave 5G, which is categorized into frequency range 2 (FR2), GaAs and GaN MMICs operating at around 28GHz are introduced. Finally, future prospect for THz GaN devices is described.

  • A Review of GaN MMIC Power Amplifier Technologies for Millimeter-Wave Applications Open Access

    Keigo NAKATANI  Yutaro YAMAGUCHI  Takuma TORII  Masaomi TSURU  

     
    INVITED PAPER

      Pubricized:
    2022/07/13
      Vol:
    E105-C No:10
      Page(s):
    433-440

    GaN microwave monolithic integrated circuit (MMIC) power amplifiers (PAs) technologies for millimeter-wave (mm-wave) applications are reviewed in this paper. In the mm-wave band, GaN PAs have achieved high-output power as much as traveling wave tube amplifiers used in satellite communications. Additionally, GaN PAs have been integrated enough to be used for 5G and Beyond-5G. In this paper, a high accuracy large-signal GaN-HEMT modeling technique including the trapping effects is introduced in mm-waves. The prototyped PAs designed with the novel modeling technique have achieved RF performance comparable to that of the state-of-the-art GaN PAs in mm-wave.