The search functionality is under construction.

Author Search Result

[Author] Kenji UEDA(3hit)

1-3hit
  • Blind Adaptive Equalizer Based on CMA and LMS Algorithm

    James OKELLO  Kenji UEDA  Hiroshi OCHI  

     
    LETTER-Fundamental Theories

      Vol:
    E87-B No:4
      Page(s):
    1012-1015

    In this letter we verify that a blind adaptive algorithm operating at a low intermediate frequency (Low-IF) can be applied to a system where carrier phase synchronization has not been achieved. We consider a quadrature amplitude shift keyed (QPSK) signal as the transmitted signal, and assume that the orthogonal low intermediate sinusoidal frequency used to generate the transmitted signal is well known. The proposed algorithm combines two algorithms: Namely, the least mean square (LMS) algorithm which has a cost function with unique minimum, and the constant modulus algorithm (CMA), which was first proposed by Godard. By doing this and operating the equalizer at a rate greater than the symbol rate, we take advantage of the variable amplitude of the sub-carriers and the fast convergence of LMS algorithm, so as to achieve a faster convergence speed. When the computer simulation results of the proposed algorithm are compared with the constant modulus algorithm (CMA) and the modified CMA (MCMA), we observed that the proposed algorithm exhibited a faster convergence speed.

  • Prospects and Problems in Fabrication of MgB2 Josephson Junctions

    Kenji UEDA  Michio NAITO  

     
    INVITED REVIEW PAPER

      Vol:
    E88-C No:2
      Page(s):
    226-231

    We briefly survey recent developments in the thin film synthesis and junction fabrication of MgB2 toward superconducting electronics. The most serious problem in the thin film synthesis of MgB2 is the high vapor pressure required for phase stability. This problem makes in-situ film growth difficult. However, there has been substantial progress in thin film technology for MgB2 in the past three years. The low-temperature thin-film process in a UHV chamber can produce high-quality MgB2 films with Tc 35 K. Furthermore, technology to produce single-crystal epitaxial MgB2 films has recently been developed by using hybrid physical-chemical vapor deposition. With regard to Josephson junctions, various types of junctions have been fabricated, all of which indicate that MgB2 has potential for superconducting devices that operate at 20-30 K, the temperature reached by current commercial cryocoolers.

  • RF Equivalent-Circuit Analysis of p-Type Diamond Field-Effect Transistors with Hydrogen Surface Termination

    Makoto KASU  Kenji UEDA  Hiroyuki KAGESHIMA  Yoshiharu YAMAUCHI  

     
    PAPER-Wide Bandgap Devices

      Vol:
    E91-C No:7
      Page(s):
    1042-1049

    On the basis of the RF characteristics of p-type diamond field-effect transistors (FETs) with hydrogen surface termination, we establish an equivalent circuit (EQC) model. From comparisons of three cases we reveal that to represent the device performance in the EQC, the source, gate, and drain resistance should be considered but that the gate-source and gate-drain resistance can be ignored. The features of diamond FETs are (1) a plateau of the gate capacitance in a certain gate voltage range. (2) maximum fT and fMAX cut-off frequencies near the threshold gate voltage, and (3) a high fMAX/fT ratio 3.8. We discuss these features in terms of the energy barrier between the gate metal and the two-dimensional hole channel and drift region below the gate.