The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Lan CHEN(22hit)

21-22hit(22hit)

  • Calculating the Maximum Doppler Frequency from Autocorrelation Functions

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Antennas and Propagation

      Vol:
    E92-B No:10
      Page(s):
    3277-3279

    In this letter, Doppler spread estimation in different Doppler spectra is investigated and some efficient methods are proposed to calculate the maximum Doppler frequency from autocorrelation function easily.

  • Deep Learning-Based Massive MIMO CSI Acquisition for 5G Evolution and 6G

    Xin WANG  Xiaolin HOU  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/06/15
      Vol:
    E105-B No:12
      Page(s):
    1559-1568

    Channel state information (CSI) acquisition at the transmitter side is a major challenge in massive MIMO systems for enabling high-efficiency transmissions. To address this issue, various CSI feedback schemes have been proposed, including limited feedback schemes with codebook-based vector quantization and explicit channel matrix feedback. Owing to the limitations of feedback channel capacity, a common issue in these schemes is the efficient representation of the CSI with a limited number of bits at the receiver side, and its accurate reconstruction based on the feedback bits from the receiver at the transmitter side. Recently, inspired by successful applications in many fields, deep learning (DL) technologies for CSI acquisition have received considerable research interest from both academia and industry. Considering the practical feedback mechanism of 5th generation (5G) New radio (NR) networks, we propose two implementation schemes for artificial intelligence for CSI (AI4CSI), the DL-based receiver and end-to-end design, respectively. The proposed AI4CSI schemes were evaluated in 5G NR networks in terms of spectrum efficiency (SE), feedback overhead, and computational complexity, and compared with legacy schemes. To demonstrate whether these schemes can be used in real-life scenarios, both the modeled-based channel data and practically measured channels were used in our investigations. When DL-based CSI acquisition is applied to the receiver only, which has little air interface impact, it provides approximately 25% SE gain at a moderate feedback overhead level. It is feasible to deploy it in current 5G networks during 5G evolutions. For the end-to-end DL-based CSI enhancements, the evaluations also demonstrated their additional performance gain on SE, which is 6%-26% compared with DL-based receivers and 33%-58% compared with legacy CSI schemes. Considering its large impact on air-interface design, it will be a candidate technology for 6th generation (6G) networks, in which an air interface designed by artificial intelligence can be used.

21-22hit(22hit)