1-1hit |
Yoshiharu AIMOTO Tohru KIMURA Yoshikazu YABE Hideki HEIUCHI Youetsu NAKAZAWA Masato MOTOMURA Takuya KOGA Yoshihiro FUJITA Masayuki HAMADA Takaho TANIGAWA Hajime NOBUSAWA Kuniaki KOYAMA
We have developed a parallel image processing RAM (PIP-RAM) which integrates a 16-Mb DRAM and 128 processor elements (PEs) by means of 0. 38-µm CMOS 64-Mb DRAM process technology. It achieves 7. 68-GIPS processing performance and 3. 84-GB/s memory bandwidth with only 1-W power dissipation (@ 30-MHz), and the key to this performance is the DRAM design. This paper presents the key circuit techniques employed in the DRAM design: 1) a paged-segmentation accessing scheme that reduces sense amplifier power dissipation, and 2) a clocked low-voltage-swing differential-charge-transfer scheme that reduces data line power dissipation with the help of a multi-phase synchronization DRAM control scheme. These techniques have general importance for the design of LSIs in which DRAMs and logic are tightly integrated on single chips.