The search functionality is under construction.

Author Search Result

[Author] Min LIANG(6hit)

1-6hit
  • Wideband Signal DOA Estimation Based on Modified Quantum Genetic Algorithm

    Feng LIU  Shaoqian LI  Min LIANG  Laizhao HU  

     
    PAPER-Communications

      Vol:
    E89-A No:3
      Page(s):
    648-653

    A new wideband signal DOA estimation algorithm based on modified quantum genetic algorithm (MQGA) is proposed in the presence of the errors and the mutual coupling between array elements. In the algorithm, the narrowband signal subspace fitting method is generalized to wideband signal DOA finding according to the character of space spectrum of wideband signal, and so the rule function is constructed. Then, the solutions is encoded onto chromosomes as a string of binary sequence, the variable quantum rotation angle is defined according to the distribution of optimization solutions. Finally, we use the MQGA algorithm to solve the nonlinear global azimuths optimization problem, and get optimization azimuths by fitness values. The computer simulation results illustrated that the new algorithm have good estimation performance.

  • Research on the Tolerance Distribution of Sealed Electromagnetic Relay with Reliability Index

    Huimin LIANG  Xuerong YE  Guofu ZHAI  

     
    PAPER-Relays & Switches

      Vol:
    E89-C No:8
      Page(s):
    1164-1172

    At present, during the design of sealed electromagnetic relay, the tolerances of design parameters are given with experience. The designer can't provide quantificational reliability index, and the blindness of tolerance distribution also causes unnecessary increase of machining cost. According to the study of electromagnetic force and spring force characteristics of a certain sealed electromagnetic relay with polarized magnetic system, this paper analyzed the influence of main design parameters' tolerances to the tolerance bands of electromagnetic force and spring force characteristics and achieved the strong correlative factors (viz. design parameters) that have obvious effect on tolerance bands of electromagnetic force and spring force characteristics. Then based on the calculation of reliability, the tolerance distribution method of key design parameters was given. This method not only can make the designed product satisfy requirement of reliability, but also reduce the machining cost.

  • Research on Distributed Parameter Model of Permanent Magnet in Robust Design of Electromagnetic Relay

    Huimin LIANG  Jiaxin YOU  Zhaowen CAI  Guofu ZHAI  

     
    PAPER-Electronic Components

      Vol:
    E97-C No:12
      Page(s):
    1142-1149

    The reliability of electromagnetic relay (EMR) which contains a permanent magnet (PM) can be improved by a robust design method. In this parameter design process, the calculation of electromagnetic system is very important. In analytical calculation, PM is often equivalent to a lumped parameter model of one magnetic resistance and one magnetic potential, but significant error is often caused; in order to increase the accuracy, a distributed parameter calculation model (DPM) of PM bar is established; solution procedure as well as verification condition of this model is given; by a case study of the single PM bar, magnetic field lines division method is adopted to build the DPM, the starting point and section magnetic flux of each segment are solved, a comparison is made with finite element method (FEM) and measured data; the accuracy of this magnetic field line based distributed parameter model (MFDPM) in PM bar is verified; this model is applied to the electromagnetic system of a certain type EMR, electromagnetic system calculation model is established based on MFDPM, and the static force is calculated under different rotation angles; compared with traditional lumped parameter model and FEM, it proves to be of acceptable calculation accuracy and high calculation speed which fit the requirement of robust design.

  • Research on Dynamic Characteristics Testing and Analyzing System of Electromagnetic Relay

    Xuerong YE  Huimin LIANG  Jie DENG  Guofu ZHAI  

     
    PAPER-Relacys & Switches

      Vol:
    E92-C No:8
      Page(s):
    1028-1033

    An electromagnetic relay (EMR) is widely used in automatic control field, and its dynamic characteristics play a significant role in EMR researches. According to structural features of the EMR, a dynamic characteristics testing and analyzing system (DCTAS) based on CCD digital image processing technique is designed and implemented. By using the DCTAS, the dynamic characteristics (include displacement, velocity, acceleration and force characteristics) of EMR whose operating time is less than 12 ms and armature travel is less than 10 mm can be investigated. The comparison of testing data obtained by the DCTAS and that of by a high speed camera indicates the validity of the system to EMR dynamic characteristics testing.

  • Method for Identification of Nonlinear Parameters and Its Application to Data Analysis for Aerospace Relay Reliability

    Huimin LIANG  Jingbo LIN  Guofu ZHAI  Wenlong WANG  

     
    PAPER-Relays & Switches

      Vol:
    E89-C No:8
      Page(s):
    1173-1176

    A method which uses the moving time and the over travel time of contact to discover the characteristics of contact and the reliability of aerospace relay is proposed. The Gauss-Newton method and its improved form (Macalto method) are used to identify the nonlinear mathematical model of the parameter during armature initial moving period, which is from the coil is energized at a rated voltage to the moment the armature begins to move. The validity of the method is verified by results of actual experiments and analysis.

  • Low Noise Receivers Based on Superconducting Niobium Nitride Hot Electron Bolometer Mixers from 0.65 to 3.1 Terahertz Open Access

    Min LIANG  Jian CHEN  Lin KANG  Biaobing JIN  Weiwei XU  Peiheng WU  

     
    INVITED PAPER

      Vol:
    E93-C No:4
      Page(s):
    473-479

    Low noise terahertz (THz) receivers based on superconducting niobium nitride (NbN) hot electron bolometer (HEB) mixers have been designed, fabricated and measured for applications in astronomy and cosmology. The NbN HEB mixer consists of a planar antenna and an NbN bridge connecting across the antenna's inner terminals on a high-resistivity Si substrate. To eliminate the influence of direct detection and instability of the local oscillation (LO) power, a wire grid has been used to change the input LO power for compensating the shift of bias current during Y-factor measurement. The double sideband (DSB) receiver noise temperatures at 4.2 K without corrections have been measured from 0.65 to 3.1 THz. The excess quantum noise factor β of about 4 has been obtained, which agrees well with the calculated value. Allan variance of the HEB has been characterized, and Allan time TA longer than 0.4 s is obtained. We also estimated the temperature resolution of the HEB from the Allan variance and obtained the minimum temperature resolution of 1.1 K using a Gunn oscillator with its multipliers at 0.65 THz as an LO source.