The search functionality is under construction.

Author Search Result

[Author] Mitsugu IWAMOTO(10hit)

1-10hit
  • An Analytic Construction of the Visual Secret Sharing Scheme for Color Images

    Hiroki KOGA  Mitsugu IWAMOTO  Hirosuke YAMAMOTO  

     
    PAPER

      Vol:
    E84-A No:1
      Page(s):
    262-272

    This paper proposes a new construction of the visual secret sharing scheme for the (n,n)-threshold access structure applicable to color images. The construction uses matrices with n rows that can be identified with homogeneous polynomials of degree n. It is shown that, if we find a set of homogeneous polynomials of degree n satisfying a certain system of simultaneous partial differential equations, we can construct a visual secret sharing scheme for the (n,n)-threshold access structure by using the matrices corresponding to the homogeneous polynomials. The construction is easily extended to the cases of the (t,n)-threshold access structure and more general access structures.

  • A Construction Method of Visual Secret Sharing Schemes for Plural Secret Images

    Mitsugu IWAMOTO  Hirosuke YAMAMOTO  

     
    PAPER-Information Security

      Vol:
    E86-A No:10
      Page(s):
    2577-2588

    In this paper, a new method is proposed to construct a visual secret sharing scheme with a general access structure for plural secret images. Although the proposed scheme can be considered as an extension of Droste's method that can encode only black-white images, it can encode plural gray-scale and/or color secret images.

  • Q-Class Authentication System for Double Arbiter PUF

    Risa YASHIRO  Takeshi SUGAWARA  Mitsugu IWAMOTO  Kazuo SAKIYAMA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    129-137

    Physically Unclonable Function (PUF) is a cryptographic primitive that is based on physical property of each entity or Integrated Circuit (IC) chip. It is expected that PUF be used in security applications such as ID generation and authentication. Some responses from PUF are unreliable, and they are usually discarded. In this paper, we propose a new PUF-based authentication system that exploits information of unreliable responses. In the proposed method, each response is categorized into multiple classes by its unreliability evaluated by feeding the same challenges several times. This authentication system is named Q-class authentication, where Q is the number of classes. We perform experiments assuming a challenge-response authentication system with a certain threshold of errors. Considering 4-class separation for 4-1 Double Arbiter PUF, it is figured out that the advantage of a legitimate prover against a clone is improved form 24% to 36% in terms of success rate. In other words, it is possible to improve the tolerance of machine-learning attack by using unreliable information that was previously regarded disadvantageous to authentication systems.

  • The Optimal n-out-of-n Visual Secret Sharing Scheme for Gray-Scale Images

    Mitsugu IWAMOTO  Hirosuke YAMAMOTO  

     
    PAPER-Information Security

      Vol:
    E85-A No:10
      Page(s):
    2238-2247

    In this paper, a method is proposed to construct an n-out-of-n visual secret sharing scheme for gray-scale images, for short an (n,n)-VSS-GS scheme, which is optimal in the sense of contrast and pixel expansion, i.e., resolution. It is shown that any (n,n)-VSS-GS scheme can be constructed based on the so-called polynomial representation of basis matrices treated in [15],[16]. Furthermore, it is proved that such construction can attain the optimal (n,n)-VSS-GS scheme.

  • How to Make a Secure Index for Searchable Symmetric Encryption, Revisited

    Yohei WATANABE  Takeshi NAKAI  Kazuma OHARA  Takuya NOJIMA  Yexuan LIU  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/05/25
      Vol:
    E105-A No:12
      Page(s):
    1559-1577

    Searchable symmetric encryption (SSE) enables clients to search encrypted data. Curtmola et al. (ACM CCS 2006) formalized a model and security notions of SSE and proposed two concrete constructions called SSE-1 and SSE-2. After the seminal work by Curtmola et al., SSE becomes an active area of encrypted search. In this paper, we focus on two unnoticed problems in the seminal paper by Curtmola et al. First, we show that SSE-2 does not appropriately implement Curtmola et al.'s construction idea for dummy addition. We refine SSE-2's (and its variants') dummy-adding procedure to keep the number of dummies sufficiently many but as small as possible. We then show how to extend it to the dynamic setting while keeping the dummy-adding procedure work well and implement our scheme to show its practical efficiency. Second, we point out that the SSE-1 can cause a search error when a searched keyword is not contained in any document file stored at a server and show how to fix it.

  • Multi-Party Computation for Modular Exponentiation Based on Replicated Secret Sharing

    Kazuma OHARA  Yohei WATANABE  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1079-1090

    In recent years, multi-party computation (MPC) frameworks based on replicated secret sharing schemes (RSSS) have attracted the attention as a method to achieve high efficiency among known MPCs. However, the RSSS-based MPCs are still inefficient for several heavy computations like algebraic operations, as they require a large amount and number of communication proportional to the number of multiplications in the operations (which is not the case with other secret sharing-based MPCs). In this paper, we propose RSSS-based three-party computation protocols for modular exponentiation, which is one of the most popular algebraic operations, on the case where the base is public and the exponent is private. Our proposed schemes are simple and efficient in both of the asymptotic and practical sense. On the asymptotic efficiency, the proposed schemes require O(n)-bit communication and O(1) rounds,where n is the secret-value size, in the best setting, whereas the previous scheme requires O(n2)-bit communication and O(n) rounds. On the practical efficiency, we show the performance of our protocol by experiments on the scenario for distributed signatures, which is useful for secure key management on the distributed environment (e.g., distributed ledgers). As one of the cases, our implementation performs a modular exponentiation on a 3,072-bit discrete-log group and 256-bit exponent with roughly 300ms, which is an acceptable parameter for 128-bit security, even in the WAN setting.

  • Visual Secret Sharing Schemes for Multiple Secret Images Allowing the Rotation of Shares

    Mitsugu IWAMOTO  Lei WANG  Kazuki YONEYAMA  Noboru KUNIHIRO  Kazuo OHTA  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1382-1395

    In this paper, a method is proposed to construct a visual secret sharing (VSS) scheme for multiple secret images in which each share can be rotated with 180 degrees in decryption. The proposed VSS scheme can encrypt more number of secret images compared with the normal VSS schemes. Furthermore, the proposed technique can be applied to the VSS scheme that allows to turn over some shares in decryption. From the theoretical point of view, it is interesting to note that such VSS schemes cannot be obtained from so-called basis matrices straightforwardly.

  • Optimal Multiple Assignments Based on Integer Programming in Secret Sharing Schemes with General Access Structures

    Mitsugu IWAMOTO  Hirosuke YAMAMOTO  Hirohisa OGAWA  

     
    PAPER-Protocols

      Vol:
    E90-A No:1
      Page(s):
    101-112

    It is known that for any general access structure, a secret sharing scheme (SSS) can be constructed from an (m,m)-threshold scheme by using the so-called cumulative map or from a (t,m)-threshold SSS by a modified cumulative map. However, such constructed SSSs are not efficient generally. In this paper, a new method is proposed to construct a SSS from a (t,m)-threshold scheme for any given general access structure. In the proposed method, integer programming is used to derive the optimal (t,m)-threshold scheme and the optimal distribution of the shares to minimize the average or maximum size of the distributed shares to participants. From the optimality, it can always attain lower coding rate than the cumulative maps because the cumulative maps cannot attain the optimal distribution in many cases. The same method is also applied to construct SSSs for incomplete access structures and/or ramp access structures.

  • A Computationally Efficient Card-Based Majority Voting Protocol with Fewer Cards in the Private Model

    Yoshiki ABE  Takeshi NAKAI  Yohei WATANABE  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER

      Pubricized:
    2022/10/20
      Vol:
    E106-A No:3
      Page(s):
    315-324

    Card-based cryptography realizes secure multiparty computation using physical cards. In 2018, Watanabe et al. proposed a card-based three-input majority voting protocol using three cards. In a card-based cryptographic protocol with n-bit inputs, it is known that a protocol using shuffles requires at least 2n cards. In contrast, as Watanabe et al.'s protocol, a protocol using private permutations can be constructed with fewer cards than the lower bounds above. Moreover, an n-input protocol using private permutations would not even require n cards in principle since a private permutation depending on an input can represent the input without using additional cards. However, there are only a few protocols with fewer than n cards. Recently, Abe et al. extended Watanabe et al.'s protocol and proposed an n-input majority voting protocol with n cards and n + ⌊n/2⌋ + 1 private permutations. This paper proposes an n-input majority voting protocol with ⌈n/2⌉ + 1 cards and 2n-1 private permutations, which is also obtained by extending Watanabe et al.'s protocol. Compared with Abe et al.'s protocol, although the number of private permutations increases by about n/2, the number of cards is reduced by about n/2. In addition, unlike Abe et al.'s protocol, our protocol includes Watanabe et al.'s protocol as a special case where n=3.

  • Information-Theoretic Perspectives for Simulation-Based Security in Multi-Party Computation

    Mitsugu IWAMOTO  

     
    INVITED PAPER-Cryptography and Information Security

      Pubricized:
    2023/12/01
      Vol:
    E107-A No:3
      Page(s):
    360-372

    Information-theoretic security and computational security are fundamental paradigms of security in the theory of cryptography. The two paradigms interact with each other but have shown different progress, which motivates us to explore the intersection between them. In this paper, we focus on Multi-Party Computation (MPC) because the security of MPC is formulated by simulation-based security, which originates from computational security, even if it requires information-theoretic security. We provide several equivalent formalizations of the security of MPC under a semi-honest model from the viewpoints of information theory and statistics. The interpretations of these variants are so natural that they support the other aspects of simulation-based security. Specifically, the variants based on conditional mutual information and sufficient statistics are interesting because security proofs for those variants can be given by information measures and factorization theorem, respectively. To exemplify this, we show several security proofs of BGW (Ben-Or, Goldwasser, Wigderson) protocols, which are basically proved by constructing a simulator.