The search functionality is under construction.

Author Search Result

[Author] Hiroki KOGA(21hit)

1-20hit(21hit)

  • Four Limits in Probability and Their Roles in Source Coding

    Hiroki KOGA  

     
    PAPER-Source Coding

      Vol:
    E94-A No:11
      Page(s):
    2073-2082

    In information-spectrum methods proposed by Han and Verdu, quantities defined by using the limit superior (or inferior) in probability play crucial roles in many problems in information theory. In this paper, we introduce two nonconventional quantities defined in probabilistic ways. After clarifying basic properties of these quantities, we show that the two quantities have operational meaning in the ε-coding problem of a general source in the ordinary and optimistic senses. The two quantities can be used not only for obtaining variations of the strong converse theorem but also establishing upper and lower bounds on the width of the entropy-spectrum. We also show that the two quantities are expressed in terms of the smooth Renyi entropy of order zero.

  • An Analytic Construction of the Visual Secret Sharing Scheme for Color Images

    Hiroki KOGA  Mitsugu IWAMOTO  Hirosuke YAMAMOTO  

     
    PAPER

      Vol:
    E84-A No:1
      Page(s):
    262-272

    This paper proposes a new construction of the visual secret sharing scheme for the (n,n)-threshold access structure applicable to color images. The construction uses matrices with n rows that can be identified with homogeneous polynomials of degree n. It is shown that, if we find a set of homogeneous polynomials of degree n satisfying a certain system of simultaneous partial differential equations, we can construct a visual secret sharing scheme for the (n,n)-threshold access structure by using the matrices corresponding to the homogeneous polynomials. The construction is easily extended to the cases of the (t,n)-threshold access structure and more general access structures.

  • New Results on Optimistic Source Coding

    Naoki SATO  Hiroki KOGA  

     
    LETTER-Information Theory

      Vol:
    E87-A No:10
      Page(s):
    2577-2580

    Optimistic coding is a coding in which we require the existence of reliable codes for infinitely many block length. In this letter we consider the optimistic source coding theorems for a general source Z from the information-spectrum approach. We first formulate the problem to be considered clearly. We obtain the optimistic infimum achievable source coding rate Tε (Z) for the case where decoding error probability εn is asymptotically less than or equal to an arbitrarily given ε [0,1). In fact, Tε (Z) turns out to be expressed in a form similar to the ordinary infimum achievable source coding rate. A new expression for Tε (Z) is also given. In addition, we investigate the case where εn = 0 for infinitely many n and obtain the infimum achievable coding rate.

  • A Characterization of Optimal FF Coding Rate Using a New Optimistically Optimal Code

    Mitsuharu ARIMURA  Hiroki KOGA  Ken-ichi IWATA  

     
    LETTER-Source Coding

      Vol:
    E96-A No:12
      Page(s):
    2443-2446

    In this letter, we first introduce a stronger notion of the optimistic achievable coding rate and discuss a coding theorem. Next, we give a necessary and sufficient condition under which the coding rates of all the optimal FF codes asymptotically converge to a constant.

  • Design Rule Relaxation Approach for High-Density DRAMs

    Takanori SAEKI  Eiichiro KAKEHASHI  Hidemitu MORI  Hiroki KOGA  Kenji NODA  Mamoru FUJITA  Hiroshi SUGAWARA  Kyoichi NAGATA  Shozo NISHIMOTO  Tatsunori MUROTANI  

     
    PAPER-Device Technology

      Vol:
    E77-C No:3
      Page(s):
    406-415

    A design rule relaxation approach is one of the most important requirements for high density DRAMs. The approach relaxes the design rule of a element in comparison with the memory cell size and provides high density DRAMs with the minimum development of a scaled-down MOS structure and a fine patterning lithography process. This paper describes two design rule relaxation approaches, a close-packed folded (CPF) bit-line cell array layout and a Boosted Dual Word-Line scheme. The CPF cell array provides 1.26 times wider active area pitch and maximum 1.5 times wider isolation width. The Boosted Dual Word-Line scheme provides 2n times wider 1st Al pitch on memory cell array, double word-line driver pitch and 1.5 times larger design rule for 1st Al and contacts under 1st Al. Especially wide design rule of the Boosted Dual Word-Line scheme provides several times depth of focus (DOF) for 1st Al wiring which gives several times higher storage node and larger capacitance for capacitor over bit-line (COB) stacked capacitor cells. These approaches are successfully implemented in a 4 Mb DRAM test chip with a 0.91.8 µm2 memory cell.

  • Optimal Basis Matrices of a Visual Cryptography Scheme with Meaningful Shares and Analysis of Its Security

    Kyohei SEKINE  Hiroki KOGA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/03/16
      Vol:
    E104-A No:9
      Page(s):
    1235-1244

    The extended visual cryptography scheme (EVCS) proposed by Ateniese et al. is one of variations of the visual cryptography scheme such that a secret image is recovered by superimposition of certain qualified collections of shares, where cover images are visible on respective shares. In this paper, we give a new definition of the EVCS for improving visibility of the recovered secret image as well as the cover images. We formulate the problem to construct the basis matrices of the EVCS with the minimum pixel expansion as an integer programming problem. We solve the integer programming problem for general access structures with less than or equal to five participants and show that basis matrices with a smaller pixel expansion can be obtained for certain cases. We also analyze security of the EVCS meeting the new definition from an information-theoretic viewpoint. We give a condition under which any forbidden collection of shares does not reveal any additional information on not only a secret image but also the cover images that are not visible on the other shares.

  • FOREWORD

    Jun MURAMATSU  Hiroki KOGA  

     
    FOREWORD

      Vol:
    E100-A No:12
      Page(s):
    2556-2557
  • A Visual Secret Sharing Scheme for Color Images Based on Meanvalue-Color Mixing

    Takeru ISHIHARA  Hiroki KOGA  

     
    LETTER

      Vol:
    E86-A No:1
      Page(s):
    194-197

    In this letter we propose a new visual secret sharing scheme (VSSS) applicable to color images containing many colors such as photographs. In the proposed VSSS we can perceive a concealed secret image appearing on a reproduced image, which is obtained by stacking certain shares, according to the principle called the meanvalue-color mixing (MCM). First, we mathematically formulate the MCM and define a new parameter that determines the minimum quality of the reproduced secret image. Then, we explicitly construct the VSSS based on the MCM under general access structures. The construction is proved to be realistic by experiment under the (2,2)-threshold access structure.

  • Improvement of Refresh Characteristics by SIMOX Technology for Giga-bit DRAMs

    Takaho TANIGAWA  Akira YOSHINO  Hiroki KOGA  Shuichi OHYA  

     
    PAPER-Dynamic RAMs

      Vol:
    E79-C No:6
      Page(s):
    781-786

    Stacked capacitor dynamic random access memory(DRAM) cells with both NMOS and PMOS cell transistors(Lg=0.4µm) were fabricated on ultra-thin SIMOX(separation by implantation of oxygen) substrates, and the data retention time was compared with that of a bulk counterpart. A DATA retention time of 550 sec(at 25 ) could be achieved using ultra-thin SIMOX substrates, which is 6 times longer than that using the bulk substrate. A stacked capacitor cell with a PMOS cell transistor on an ultra-thin SIMOX substrate is very attractive and promising for future giga-bit DRAM cells.

  • Measuring Contact Resistance of a Poly-Silicon Plug on a Lightly Doped Single-Diffusion Region in DRAM Cells

    Naoki KASAI  Hiroki KOGA  Yoshihiro TAKAISHI  

     
    PAPER

      Vol:
    E85-C No:5
      Page(s):
    1146-1150

    A practical method of measuring the contact resistance of a phosphorus-doped poly-Si plug formed on a lightly phosphorus-doped diffusion region in DRAM memory cells is described. Contact resistance was obtained electrically, using ordinary contact-chain test structures, by changing the measurement of the substrate bias. This separated the bias-dependent resistance of the lightly doped diffusion layer from the total resistance. The method was used experimentally to evaluate the feasibility of forming low-resistance contacts down to a diameter of 130 nm for giga-bit DRAMs. Electrical measurement showed that reducing the interface resistance between the poly-Si plug and the lightly doped diffusion layer was effective for forming low-resistance contacts, though a specific interface layer could not be detected by TEM observation.

  • On the Achievable Rate Region in the Optimistic Sense for Separate Coding of Two Correlated General Sources

    Hiroki KOGA  

     
    PAPER-Source Coding

      Vol:
    E95-A No:12
      Page(s):
    2100-2106

    This paper is concerned with coding theorems in the optimistic sense for separate coding of two correlated general sources X1 and X2. We investigate the achievable rate region Ropt (X1,X2) such that the decoding error probability caused by two encoders and one decoder can be arbitrarily small infinitely often under a certain rate constraint. We give an inner and an outer bounds of Ropt (X1,X2), where the outer bound is described by using new information-theoretic quantities. We also give two simple sufficient conditions under which the inner bound coincides with the outer bound.

  • Redundancy-Optimal FF Codes for a General Source and Its Relationships to the Rate-Optimal FF Codes

    Mitsuharu ARIMURA  Hiroki KOGA  Ken-ichi IWATA  

     
    PAPER-Source Coding

      Vol:
    E96-A No:12
      Page(s):
    2332-2342

    In this paper we consider fixed-to-fixed length (FF) coding of a general source X with vanishing error probability and define two kinds of optimalities with respect to the coding rate and the redundancy, where the redundancy is defined as the difference between the coding rate and the symbolwise ideal codeword length. We first show that the infimum achievable redundancy coincides with the asymptotic width W(X) of the entropy spectrum. Next, we consider the two sets $mCH(X)$ and $mCW(X)$ and investigate relationships between them, where $mCH(X)$ and $mCW(X)$ denote the sets of all the optimal FF codes with respect to the coding rate and the redundancy, respectively. We give two necessary and sufficient conditions corresponding to $mCH(X) subseteq mCW(X)$ and $mCW(X) subseteq mCH(X)$, respectively. We can also show the existence of an FF code that is optimal with respect to both the redundancy and the coding rate.

  • On the Asymptotic Behaviors of the Recurrence Time with Fidelity Criterion for Discrete Memoryless Sources and Memoryless Gaussian Sources

    Hiroki KOGA  Suguru ARIMOTO  

     
    LETTER-Information Theory and Coding Theory

      Vol:
    E81-A No:5
      Page(s):
    981-986

    The asymptotic behavior of the recurrence time with fidelity criterion is discussed. Let X= be a source and Y= a database. For a Δ>0 and an integer l>0 define (Y,X,Δ) as the minimum integer N satisfying dl(,) Δ subject to a fidelity criterion dl. In this paper the following two i. i. d. cases are considered: (A) Xi P and Yi Q, where P and Q are probability distributions on a finite alphabet, and (B) Xi N(0,1) and Yi N(0,1). In case (A) it is proved that (1/l)log2(Y,X,Δ) almost surely converges to a certain constant determined by P, Q and Δ as l. The Kac's lemma plays an important role in the proof on the convergence. In case (B) it is shown that there is a quantity related to (1/l)log2 (Y,X,Δ) that converges to the rate-distortion bound in almost sure sense.

  • New Constructions of the Lattice-Based Visual Secret Sharing Scheme Using Mixture of Colors

    Takeru ISHIHARA  Hiroki KOGA  

     
    PAPER

      Vol:
    E85-A No:1
      Page(s):
    158-166

    In this paper, we treat visual secret sharing scheme (VSSS) for color images. We first evaluate the brightness of the decrypted color image under certain conditions on the mixture of colors. We obtain a general formula for the construction of VSSS using mixture of colors. We second propose an iterative algorithm for constructing VSSS in a practical situation. If we use the iterative construction, we have only to solve partial differential equations with small n even if n is actually large, where n denotes the number of participants. This iterative construction has never discussed in the both cases under the original images are black-white images and color images. Finally, we propose the way to embed a color image on each share for the case that the original image is color.

  • A Generalization of the Simmons' Bounds on Secret-Key Authentication Systems

    Hiroki KOGA  

     
    LETTER-Cryptography and Information Security

      Vol:
    E83-A No:10
      Page(s):
    1983-1986

    This paper analyzes a generalized secret-key authentication system from a viewpoint of the information-spectrum methods. In the generalized secret-key authentication system, for each n 1 a legitimate sender transmits a cryptogram Wn to a legitimate receiver sharing a key En in the presence of an opponent who tries to cheat the legitimate receiver. A generalized version of the Simmons' bounds on the success probabilities of the impersonation attack and a certain kind of substitution attack are obtained.

  • On the Problem of Generating Mutually Independent Random Sequences

    Jun MURAMATSU  Hiroki KOGA  Takafumi MUKOUCHI  

     
    PAPER-Information Theory

      Vol:
    E86-A No:5
      Page(s):
    1275-1284

    The achievable rate region related to the problem of generating mutually independent random sequences is determined. Furthermore, it is proved that the output distribution of lossless source encoders with correlated side information is asymptotically independent of the side information. Based on this, we can realize a random number generator that produces mutually asymptotically independent random sequences from random sequences emitted from correlated sources.

  • FOREWORD Open Access

    Hiroki KOGA  

     
    FOREWORD

      Vol:
    E106-A No:3
      Page(s):
    358-358
  • Coding Theorems for Secret-Key Authentication Systems

    Hiroki KOGA  Hirosuke YAMAMOTO  

     
    PAPER-Information Theory

      Vol:
    E83-A No:8
      Page(s):
    1691-1703

    This paper provides the Shannon theoretic coding theorems on the success probabilities of the impersonation attack and the substitution attack against secret-key authentication systems. Though there are many studies that develop lower bounds on the success probabilities, their tight upper bounds are rarely discussed. This paper characterizes the tight upper bounds in an extended secret-key authentication system that includes blocklength K and permits the decoding error probability tending to zero as K . In the extended system an encoder encrypts K source outputs to K cryptograms under K keys and transmits K cryptograms to a decoder through a public channel in the presence of an opponent. The decoder judges whether K cryptograms received from the public channel are legitimate or not under K keys shared with the encoder. It is shown that 2-KI(W;E) is the minimal attainable upper bound of the success probability of the impersonation attack, where I(W;E) denotes the mutual information between a cryptogram W and a key E. In addition, 2-KH(E|W) is proved to be the tight upper bound of the probability that the opponent can correctly guess K keys from transmitted K cryptograms, where H(E|W) denotes the conditional entropy of E given W.

  • A Digital Fingerprinting Code Based on a Projective Plane and Its Identifiability of All Malicious Users

    Hiroki KOGA  Yusuke MINAMI  

     
    PAPER-Digital Fingerprinting

      Vol:
    E94-A No:1
      Page(s):
    223-232

    In this paper we unveil basic properties of a code Γq for digital fingerprinting based on a projective plane of order q. We consider a situation where a coalition of malicious users generates a pirated digital content in which a binary sequence w is embedded subject to the marking assumption. Here, the size of the coalition is assumed to be less than or equal to a known constant c ≥ 2. We evaluate the number of candidates of the coalition that can also generate w subject to the marking assumption. It is shown that the number of such candidates is completely determined as a function of w for the case of c = 2. In addition, we give a sufficient condition under which all the malicious users are correctly identified from w for the case of c ≥ 3. Relationships between Γq and other existing classes of codes are discussed as well.

  • Asymptotic Optimality of Modified Spherical Codes with Scalar Quentization of Gain for Memoryless Gaussian Sources

    Hiroki KOGA  Suguru ARIMOTO  

     
    PAPER

      Vol:
    E76-A No:9
      Page(s):
    1403-1410

    This paper characterizes a class of optimal fixed-to-fixed length data compression codes for memoryless Gaussian sources that achieve asymptotically the rate-distortion bound under squared-error criterion. Any source output of blocklength n is encoded by two steps, i.e., 1) to quantize in gain by scholar quantizers and 2) to quantize in shape by pointsets on n-dimensional hyperspheres. To show the asymptotic optimality of the proposed codes, rate-distortion properties of the codes are analyzed in detail by using a random coding argument on the n-dimensional unit hypersphere. It is shown that asymptotic behaviors of the proposed codes are mainly determined by the choice of scalar quantizer of the gain. As a results, deep insights into not only the class of asymptotically optimal codes but also the rate-distortion bound itself are obtained.

1-20hit(21hit)