The search functionality is under construction.

Author Search Result

[Author] Shan LU(10hit)

1-10hit
  • Two-User Turbo Decoding with Simplified Sum Trellis in Two-Way Relay Channel

    Shan LU  Jun CHENG  Ying LI  Yoichiro WATANABE  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:1
      Page(s):
    73-80

    Physical-layer network coding with binary turbo coding in a two-way relay channel is considered. A two-user turbo decoding scheme is proposed with a simplified sum trellis. For two-user iterative decoding at a relay, the component decoder with its simplified sum trellis decodes the superimposed signal to the arithmetic sum of two users' messages. The simplified sum trellis is obtained by removing one of the states in a pair of mutual symmetrical states from a sum trellis. This removal reduces the decoding complexity to half of that with the sum trellis, and does not degrade decoding performance over AWGN channel since two output sequences from the pair of mutual symmetrical states are the same.

  • Recursive Construction of (k+1)-Ary Error-Correcting Signature Code for Multiple-Access Adder Channel

    Shan LU  Jun CHENG  Yoichiro WATANABE  

     
    PAPER-Coding Theory

      Vol:
    E96-A No:12
      Page(s):
    2368-2373

    A recursive construction of (k+1)-ary error-correcting signature code is proposed to identify users for MAAC, even in the presence of channel noise. The recursion is originally from a trivial signature code. In the (j-1)-th recursion, from a signature code with minimum distance of 2j-2, a longer and larger signature code with minimum distance of 2j-1 is obtained. The decoding procedure of signature code is given, which consists of error correction and user identification.

  • Worst-Case Performance of ILIFC with Inversion Cells

    Akira YAMAWAKI  Hiroshi KAMABE  Shan LU  

     
    PAPER-Coding Theory for Strage

      Vol:
    E100-A No:12
      Page(s):
    2662-2670

    Index-less Indexed Flash Code (ILIFC) is a coding scheme for flash memories in which one bit of a data sequence is stored in a slice consisting of several cells but the index of the bit is stored implicitly. Although several modified ILIFC schemes have been proposed, in this research we consider an ILIFC with inversion cells (I-ILIFC). The I-ILIFC reduces the total number of cell level changes at each write request. Computer simulation is used to show that the I-ILIFC improves the average performance of the ILIFC in many cases. This paper presents our derivation of the lower bound on the number of write operations by I-ILIFC and shows that the worst-case performance of the I-ILIFC is better than that of the ILIFC if the code length is sufficiently large. Additionally, we consider another lower bound thereon. The results show that the threshold of the code length that determines whether the I-ILIFC improves the worst-case performance of the ILIFC is lower than that in the first lower bound.

  • Low-Complexity Joint Transmit and Receive Antenna Selection for Transceive Spatial Modulation

    Junshan LUO  Shilian WANG  Qian CHENG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/12
      Vol:
    E102-B No:8
      Page(s):
    1695-1704

    Joint transmit and receive antenna selection (JTRAS) for transceive spatial modulation (TRSM) is investigated in this paper. A couple of low-complexity and efficient JTRAS algorithms are proposed to improve the reliability of TRSM systems by maximizing the minimum Euclidean distance (ED) among all received signals. Specifically, the QR decomposition based ED-JTRAS achieves near-optimal error performance with a moderate complexity reduction as compared to the optimal ED-JTRAS method. The singular value decomposition based ED-JTRAS achieves sub-optimal error performance with a significant complexity reduction. Simulation results show that the proposed methods remarkably improve the system reliability in both uncorrelated and spatially correlated Rayleigh fading channels, as compared to the conventional norm based JTRAS method.

  • User Identification and Channel Estimation by Iterative DNN-Based Decoder on Multiple-Access Fading Channel Open Access

    Lantian WEI  Shan LU  Hiroshi KAMABE  Jun CHENG  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2021/09/01
      Vol:
    E105-A No:3
      Page(s):
    417-424

    In the user identification (UI) scheme for a multiple-access fading channel based on a randomly generated (0, 1, -1)-signature code, previous studies used the signature code over a noisy multiple-access adder channel, and only the user state information (USI) was decoded by the signature decoder. However, by considering the communication model as a compressed sensing process, it is possible to estimate the channel coefficients while identifying users. In this study, to improve the efficiency of the decoding process, we propose an iterative deep neural network (DNN)-based decoder. Simulation results show that for the randomly generated (0, 1, -1)-signature code, the proposed DNN-based decoder requires less computing time than the classical signal recovery algorithm used in compressed sensing while achieving higher UI and channel estimation (CE) accuracies.

  • Secure Directional Modulation Using the Symmetrical Multi-Carrier Frequency Diverse Array with Logarithmical Frequency Increment

    Tao XIE  Jiang ZHU  Qian CHENG  Junshan LUO  

     
    PAPER-Communication Theory and Signals

      Vol:
    E102-A No:4
      Page(s):
    633-640

    Wireless communication security has become a hot topic in recent years. The directional modulation (DM) is a promising secure communication technique that has attracted attentions of many researchers. Several different frequency diverse arrays (FDAs) are used to obtain the direction-range-dependent DM signals in previous literatures. However, most of them are not ideal enough to obtain a nonperiodic dot-shaped secure area. In this paper, the symmetrical multi-carrier frequency diverse array with logarithmical frequency increment, named the symmetrical-multilog-FDA, is used to obtain the direction-range-dependent DM signals that are normal at the desired locations while disordered at other locations. Based on the symmetrical-multilog-FDA, we derive the closed-form expression of baseband-weighted vector using the artificial-noise-aided zero-forcing approach. Compared with previous schemes, the proposed scheme can obtain a more fine-focusing nonperiodic dot-shaped secure area at the desired location. In addition, it can achieve a point-to-multipoint secure communication for multiple cooperative receivers at different locations.

  • Secure Spatial Modulation Based on Dynamic Multi-Parameter WFRFT

    Qian CHENG  Jiang ZHU  Junshan LUO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/08
      Vol:
    E101-B No:11
      Page(s):
    2304-2312

    A novel secure spatial modulation (SM) scheme based on dynamic multi-parameter weighted-type fractional Fourier transform (WFRFT), abbreviated as SMW, is proposed. Each legitimate transmitter runs WFRFT on the spatially modulated super symbols before transmit antennas, the parameters of which are dynamically updated using the transmitting bits. Each legitimate receiver runs inverse WFRFT to demodulate the received signals, the parameters of which are also dynamically generated using the recovered bits with the same updating strategies as the transmitter. The dynamic update strategies of WFRFT parameters are designed. As a passive eavesdropper is ignorant of the initial WFRFT parameters and the dynamic update strategies, which are indicated by the transmitted bits, it cannot recover the original information, thereby guaranteeing the communication security between legitimate transmitter and receiver. Besides, we formulate the maximum likelihood (ML) detector and analyze the secrecy capacity and the upper bound of BER. Simulations demonstrate that the proposed SMW scheme can achieve a high level of secrecy capacity and maintain legitimate receiver's low BER performance while deteriorating the eavesdropper's BER.

  • Construction of Parallel Random I/O Codes Using Coset Coding with Hamming Codes

    Akira YAMAWAKI  Hiroshi KAMABE  Shan LU  

     
    PAPER-Coding theory for storage

      Vol:
    E101-A No:12
      Page(s):
    2125-2134

    In multilevel flash memory, in general, multiple read thresholds are required to read a single logical page. Random I/O (RIO) code, introduced by Sharon and Alrod, is a coding scheme that enables the reading of one logical page using a single read threshold. It was shown that the construction of RIO codes is equivalent to the construction of write-once memory (WOM) codes. Yaakobi and Motwani proposed a family of RIO codes, called parallel RIO (P-RIO) code, in which all logical pages are encoded in parallel. In this paper, we utilize coset coding with Hamming codes in order to construct P-RIO codes. Coset coding is a technique to construct WOM codes using linear binary codes. We leverage information on the data of all pages to encode each page. Our P-RIO codes, using which more pages can be stored than RIO codes constructed via coset coding, have parameters for which RIO codes do not exist.

  • Unrestricted-Rate Parallel Random Input-Output Codes for Multilevel Flash Memory

    Shan LU  Hiroshi KAMABE  Jun CHENG  Akira YAMAWAKI  

     
    PAPER-Coding theory for storage

      Vol:
    E101-A No:12
      Page(s):
    2135-2140

    Recent years have seen increasing efforts to improve the input/output performance of multilevel flash memory. In this regard, we propose a coding scheme for two-page unrestricted-rate parallel random input-output (P-RIO) code, which enables different code rates to be used for each page of multilevel memory. On the second page, the set of cell-state vectors for each message consists of two complementary vectors with length n. There are a total of 2n-1 sets that are disjoint to guarantee that they are uniquely decodable for 2n-1 messages. On the first page, the set of cell-state vectors for each message consists of all weight-u vectors with their non-zero elements restricted to the same (2u-1) positions, where the non-negative integer u is less than or equal to half of the code length. Finding cell-state vector sets such that they are disjoint on the first page is equivalent to the construction of constant-weight codes, and the number of disjoint sets is the best-known number of code words in the constant-weight codes. Our coding scheme is constructive, and the code length is arbitrary. The sum rates of our proposed codes are higher than those of previous work.

  • Low-Complexity Time-Invariant Angle-Range Dependent DM Based on Time-Modulated FDA Using Vector Synthesis Method

    Qian CHENG  Jiang ZHU  Tao XIE  Junshan LUO  Zuohong XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/07/18
      Vol:
    E103-B No:1
      Page(s):
    79-90

    A low-complexity time-invariant angle-range dependent directional modulation (DM) based on time-modulated frequency diverse array (TM-FDA-DM) is proposed to achieve point-to-point physical layer security communications. The principle of TM-FDA is elaborated and the vector synthesis method is utilized to realize the proposal, TM-FDA-DM, where normalization and orthogonal matrices are designed to modulate the useful baseband symbols and inserted artificial noise, respectively. Since the two designed matrices are time-invariant fixed values, which avoid real-time calculation, the proposed TM-FDA-DM is much easier to implement than time-invariant DMs based on conventional linear FDA or logarithmical FDA, and it also outperforms the time-invariant angle-range dependent DM that utilizes genetic algorithm (GA) to optimize phase shifters on radio frequency (RF) frontend. Additionally, a robust synthesis method for TM-FDA-DM with imperfect angle and range estimations is proposed by optimizing normalization matrix. Simulations demonstrate that the proposed TM-FDA-DM exhibits time-invariant and angle-range dependent characteristics, and the proposed robust TM-FDA-DM can achieve better BER performance than the non-robust method when the maximum range error is larger than 7km and the maximum angle error is larger than 4°.