1-2hit |
Ken'ichi HOSOYA Shin'ichi TANAKA Kazuhiko HONJO
A new analytical approach which reveals relationships between resonator parameters (unloaded Q-factor, coupling coefficient, and loaded Q-factor) and phase noise in microwave negative-resistance oscillators is presented. On the basis of Kurokawa's theory, this approach derives analytical expressions for the phase noise as a function of the resonator parameters (with particular emphasis on the coupling coefficient). Two types of negative-resistance oscillators--classified according to the manner in which the resonator is used in a circuit--are analyzed. These analyses use realistic circuit configurations and design procedures. The passive network connecting the active device and the resonator, which is shown to have important effects on the above-mentioned relationship, is taken into account. Validity of the new approach is verified through harmonic-balance simulations. The presented analytical approach can provide useful guidelines for choosing the resonator parameters, especially the value of the coupling coefficient, when designing microwave negative-resistance oscillators.
Ken'ichi HOSOYA Yasuyuki SUZUKI Yasushi AMAMIYA Zin YAMAZAKI Masayuki MAMADA Akira FUJIHARA Masafumi KAWANAKA Shin'ichi TANAKA Shigeki WADA Hikaru HIDA
Application of microwave and millimeter-wave circuit technologies to InGaP-HBT ICs for 40-Gbps optical-transmission systems is demonstrated from two aspects. First, ICs for various important functions -- amplification of data signals, amplification, frequency doubling, and phase control of clock signals -- are successfully developed based on microwave and millimeter-wave circuit configurations mainly composed of distributed elements. A distributed amplifier exhibits ≥164-GHz gain-bandwidth product with low power consumption (PC) of 71.2 mW. A 20/40-GHz-band frequency doubler achieves wideband performance (40%) with low PC (26 mW) by integrating a high-pass filter and a buffer amplifier (as a low-pass filter). A compact 40-GHz analog phase shifter, 20- and 40-GHz-band clock amplifiers with low PC are also realized. Second, a familiar concept in microwave-circuit design is applied to a high-speed digital circuit. A new approach -- inserting impedance-transformer circuits -- to enable 'impedance matching' in digital ICs is successfully applied to a 40-Gbps decision circuit to prevent unwanted gain peaking and jitter increase caused by transmission lines without sacrificing chip size.