The search functionality is under construction.

Author Search Result

[Author] Shinji KOMORI(3hit)

1-3hit
  • Self-Timed Clocking Design for a Data-Driven Microprocessor

    Fumiyasu ASAI  Shinji KOMORI  Toshiyuki TAMURA  Hisakazu SATO  Hidehiro TAKATA  Yoshihiro SEGUCHI  Takeshi TOKUDA  Hiroaki TERADA  

     
    PAPER-Circuit Design

      Vol:
    E74-C No:11
      Page(s):
    3757-3765

    This paper details a unique VLSI design scheme which employs self-timed circuits. A 32-bit 50-MFLOPS data-driven microprocessor has been designed using a self-timed clocking scheme. This high performance data-driven microprocessor with sophisticated functions has been designed by a combination of several kinds of self-timed components. All functional blocks in the microprocessor are driven by self-timed clocks. The microprocessor integrates 700,000 devices in a 14.65 mm14.65 mm die area using double polysilicon double metal 0.8 µm CMOS technology.

  • A 3.2 GFLOPS Neural Network Accelerator

    Shinji KOMORI  Yutaka ARIMA  Yoshikazu KONDO  Hirono TSUBOTA  Ken-ichi TANAKA  Kazuo KYUMA  

     
    INVITED PAPER

      Vol:
    E80-C No:7
      Page(s):
    859-867

    We have developed an SIMD-type neural-network processor (NEURO4) and its software environment. With the SIMD architecture, the chip executes 24 operations in a clock cycle and achieves 1.2 GFLOPS peak performance. An accelerator board, which contains four NEURO4 chips, achieves 3.2 GFLOPS. In this paper we describe features of the neural network chip, accelerator board, software environment and performance evaluation for several neural network models (LVQ, BP and Hopfield). The 3.2 GFLOPS neural network accelerator board demonstrates 1.7 GCPS and 261 MCUPS for Hopfield networks.

  • The Application of a Data-Driven Processor to Automotive Engine Control

    Kenji SHIMA  Koichi MUNAKATA  Shoichi WASHINO  Shinji KOMORI  Yasuya KAJIWARA  Setsuhiro SHIMOMURA  

     
    PAPER

      Vol:
    E76-C No:12
      Page(s):
    1794-1803

    Automotive electronics technology has become extremely advanced in the regions of automotive engine control, anti-skid brake control, and others. These control systems require highly advanced control performance and high speed microprocessors which can rapidly execute interrupt processing. Automotive engine control systems are now widely utilized in cars with high speed, high power engines. At present, it is generally acknowledged that such high performance engine control for the 10,000 rpm, 12 cylinder engines requires three or more conventional microprocessors. We fabricated an engine control system prototype incorporating the data-driven processor under development, which was installed in an actual automobile. In this paper, the characteristics of the engine control program and simulation results are firstly discussed. Secondly, the structure of the engine control system prototype and the control performance applied to the actual automobile are shown. Finally, from the results of software simulation and the installation of the engine control system prototype with the data-driven processor, we conclude that a single chip data-driven microprocessor can control a high speed, high power, 10,000 rpm, 12 cylinder automobile engine.