1-6hit |
Kenji SHIMA Koichi MUNAKATA Shoichi WASHINO Shinji KOMORI Yasuya KAJIWARA Setsuhiro SHIMOMURA
Automotive electronics technology has become extremely advanced in the regions of automotive engine control, anti-skid brake control, and others. These control systems require highly advanced control performance and high speed microprocessors which can rapidly execute interrupt processing. Automotive engine control systems are now widely utilized in cars with high speed, high power engines. At present, it is generally acknowledged that such high performance engine control for the 10,000 rpm, 12 cylinder engines requires three or more conventional microprocessors. We fabricated an engine control system prototype incorporating the data-driven processor under development, which was installed in an actual automobile. In this paper, the characteristics of the engine control program and simulation results are firstly discussed. Secondly, the structure of the engine control system prototype and the control performance applied to the actual automobile are shown. Finally, from the results of software simulation and the installation of the engine control system prototype with the data-driven processor, we conclude that a single chip data-driven microprocessor can control a high speed, high power, 10,000 rpm, 12 cylinder automobile engine.
Kenji SHIMAZAKI Makoto NAGATA Takeshi OKUMOTO Shozo HIRANO Hiroyuki TSUJIKAWA
Dynamic power supply noise measurements with resolutions of 100 ps and 100 µV for 100 ns and 1 V ranges are performed at various operating frequencies up to 400 MHz on multiple points in a low power register file and SRAM for product chips by using on-chip noise detectors. The measurements show that the noises are clearly emphasized in frequency domains by the interaction of circuit operations and bias network's AC transfers. A proposed design methodology that covers a fast SPICE simulator and parasitic extractors can predict dynamic noises from power supplies, ground, well, and substrate interactions to provide robustness to the design of low power body bias control circuitry.
Kenji SHIMAZAKI Makoto NAGATA Mitsuya FUKAZAWA Shingo MIYAHARA Masaaki HIRATA Kazuhiro SATOH Hiroyuki TSUJIKAWA
We propose a semi-dynamic timing analysis flow applicable to large-scale circuits that takes into account dynamic power-supply drop. Logic delay is accurately estimated in the presence of power-supply noise through timing correction as a function of power-supply voltage during operation, where a time-dependent power-supply noise waveform is derived by way of a vectorless technique. Measurements and analysis of dynamic supply-noise waveforms and associated delay changes were performed on a sub-100-nm CMOS test circuit with embedded on-chip noise detectors and delay monitors. The proposed analysis technique was extended and applied to a test digital circuit with more than 10 million gates and validated toward a multi-10-million-gate CMOS SoC design.
Hiroyuki TSUJIKAWA Kenji SHIMAZAKI Shozo HIRANO Kazuhiro SATO Masanori HIROFUJI Junichi SHIMADA Mitsumi ITO Kiyohito MUKAI
In the move toward higher clock rates and advanced process technologies, designers of the latest electronic products are finding increasing silicon failure with respect to noise. On the other hand, the minimum dimension of patterns on LSIs is much smaller than the wavelength of exposure, making it difficult for LSI manufacturers to obtain high yield. In this paper, we present a solution to reduce power-supply noise in LSI microchips. The proposed design methodology also considers design for manufacturability (DFM) at the same time as power integrity. The method was successfully applied to the design of a system-on-chip (SOC), achieving a 13.1-13.2% noise reduction in power-supply voltage and uniformity of pattern density for chemical mechanical polishing (CMP).
Hiroyuki TSUJIKAWA Shozo HIRANO Kenji SHIMAZAKI
Large-scale integration (LSI) microchips are widely used in many types of modern electronic products including electric appliances, cellular phones, toys, electronic games, and automobiles. The electromagnetic interference (EMI) noise produced by these micro devices can cause significant operational problems in other devices in the system. Some methods that have been proposed for such analysis estimates the EMI noise characteristic through transistor-level power simulation. However, in these methods, transistor-level circuit simulation is performed by combining the power-supply impedance model and the power-supply source model. In general, transistor-level simulators are too slow for practical application-specific integrated circuit (ASIC) design. In this paper, a total solution for reducing EMI noise in LSI microchips was presented. The proposed design methodology integrates fast and accurate estimation, reduction, and verification. The method was successfully applied to the design of a 32-bit microprocessor, achieving a 2-dB noise reduction in the FM frequency band and 10-dB reduction at 1 GHz. The proposed design methodology is a powerful solution for LSI designers as a tool for minimizing EMI noise and achieve higher levels of reliability for the microelectronic products.
Takaaki OKUMURA Fumihiro MINAMI Kenji SHIMAZAKI Kimihiko KUWADA Masanori HASHIMOTO
This paper presents a gate delay estimation method that takes into account dynamic power supply noise. We review STA based on static IR-drop analysis and a conventional method for dynamic noise waveform, and reveal their limitations and problems that originate from circuit structures and higher delay sensitivity to voltage in advanced technologies. We then propose a gate delay computation that overcomes the problems with iterative computations and consideration of input voltage drop. Evaluation results with various circuits and noise injection timings show that the proposed method estimates path delay fluctuation well within 1% error on average.