1-2hit |
Kazuhiro MOCHIZUKI Ken-ichi TANAKA Takashi SHIOTA Takafumi TANIGUCHI Hiroyuki UCHIYAMA
The effects of rapid thermal annealing (RTA) on bias-stress-induced base leakage were investigated in InGaP/GaAs collector-up heterojunction bipolar transistors (C-up HBTs) fabricated with boron ion implantation. C-up HBTs annealed at 700 for 1 s had negligible leakage, while non-annealed C-up HBTs had leakage (with an activation energy, Ea, of 0.17 eV) that exponentially increased with bias time. Because this Ea is almost the same as that of the hole traps (0.25 eV) observed in the InGaP emitters of non-annealed C-up HBTs, we attribute the leakage to hole tunneling from bases to emitters. By reducing the initial trap density using RTA, we stabilized current gain even after 1,030 h of testing at a junction temperature of 210 and a collector current density of 40 kA/cm2.
Shigeki MAKINO Kazunori SHINODA Takeshi KITATANI Hiroaki HAYASHI Takashi SHIOTA Shigehisa TANAKA Masahiro AOKI Noriko SASADA Kazuhiko NAOE
We have developed a high-speed electroabsorption modulator integrated distributed feedback (EA/DFB) lasers. Transmission performance over 10 km was investigated under 25 Gbps and 43 Gbps modulation. In addition, the feasibility of wide temperature range operation was also investigated. An uncooled EA/DFB laser can contribute to the realization of low-power-consumption, small-footprint and cost-effective transceiver module. In this study, we used the temperature-tolerant InGaAlAs materials in an EA modulator. A wide temperature ranged 12 km transmission with over 9.6 dB dynamic extinction ratio was demonstrated under 25 Gbps modulation. A 43 Gbps 10 km transmission was also demonstrated. The laser achieved a clear, opened eye diagram with a dynamic extinction ratio over 7 dB from 25 to 85. The modulated output power was more than +2.9 dBm even at 85. These devices are suitable for next-generation, high-speed network systems, such as 40 Gbps and 100 Gbps Ethernet.