The search functionality is under construction.

Author Search Result

[Author] Noriko SASADA(2hit)

1-2hit
  • Compact and Low-Power-Consumption 40-Gbit/s, 1.55-µm Electro-Absorption Modulators

    Hideo ARIMOTO  Jun-ichiro SHIMIZU  Takeshi KITATANI  Kazunori SHINODA  Tomonobu TSUCHIYA  Masataka SHIRAI  Masahiro AOKI  Noriko SASADA  Hiroshi YAMAMOTO  Kazuhiko NAOE  Mitsuo AKASHI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E88-C No:5
      Page(s):
    951-959

    This paper describes 40-Gbit/s operation of 1.55-µm electro-absorption (EA) modulators applicable to compact and low-cost transmitters for very-short-reach (VSR) applications. We start by identifying factors that make a multi-quantum-well (MQW) design suitable for high levels of output power and for uncooled operation. From the basic experimental results, we determine that a valence-band discontinuity ΔEv at around 80 meV is optimal in terms of combining high-output-power operation and a good extinction ratio. We then apply the above findings in an InGaAsP-MQW EA modulator that is monolithically integrated with a distributed feedback (DFB) laser, and thus obtain operation with high output power (+1.2 dBm), a high ER (10.5 dB), and a low power penalty (0.4 dB after transmission over 2.6 km of single-mode-fiber). These results confirm the applicability of our EA modulator/DFB laser to VSR applications. After that, we theoretically demonstrate the superiority in terms of ER characteristics of the InGaAlAs-MQW over the conventional InGaAsP-MQW. InGaAlAs-MQW EA modulators are fabricated and demonstrate, for the first time, 40-Gbit/s operation over a wide temperature range (0 to 85).

  • High-Speed EA-DFB Laser for 40-G and 100-Gbps Open Access

    Shigeki MAKINO  Kazunori SHINODA  Takeshi KITATANI  Hiroaki HAYASHI  Takashi SHIOTA  Shigehisa TANAKA  Masahiro AOKI  Noriko SASADA  Kazuhiko NAOE  

     
    INVITED PAPER

      Vol:
    E92-C No:7
      Page(s):
    937-941

    We have developed a high-speed electroabsorption modulator integrated distributed feedback (EA/DFB) lasers. Transmission performance over 10 km was investigated under 25 Gbps and 43 Gbps modulation. In addition, the feasibility of wide temperature range operation was also investigated. An uncooled EA/DFB laser can contribute to the realization of low-power-consumption, small-footprint and cost-effective transceiver module. In this study, we used the temperature-tolerant InGaAlAs materials in an EA modulator. A wide temperature ranged 12 km transmission with over 9.6 dB dynamic extinction ratio was demonstrated under 25 Gbps modulation. A 43 Gbps 10 km transmission was also demonstrated. The laser achieved a clear, opened eye diagram with a dynamic extinction ratio over 7 dB from 25 to 85. The modulated output power was more than +2.9 dBm even at 85. These devices are suitable for next-generation, high-speed network systems, such as 40 Gbps and 100 Gbps Ethernet.