The search functionality is under construction.

Author Search Result

[Author] Takuro AMASHITA(2hit)

1-2hit
  • Bit-Error and Soft-Error Resilient 7T/14T SRAM with 150-nm FD-SOI Process

    Shusuke YOSHIMOTO  Takuro AMASHITA  Shunsuke OKUMURA  Koji NII  Masahiko YOSHIMOTO  Hiroshi KAWAGUCHI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E95-A No:8
      Page(s):
    1359-1365

    This paper presents measurement results of bit error rate (BER) and soft error rate (SER) improvement on 150-nm FD-SOI 7T/14T (7-transistor/ 14-transistor) SRAM test chips. The reliability of the 7T/14T SRAM can be dynamically changed by a control signal depending on an operating condition and application. The 14T dependable mode allocates one bit in a 14T cell and improves the BER in a read operation and SER in a retention state, simultaneously. We investigate its error rate mitigating mechanisms using Synopsys TCAD simulator. In our measurements, the minimum operating voltage was improved by 100 mV, the alpha-induced SER was suppressed by 80.0%, and the neutron-induced SER was decreased by 34.4% in the 14T dependable mode over the 7T normal mode.

  • Multiple-Bit-Upset and Single-Bit-Upset Resilient 8T SRAM Bitcell Layout with Divided Wordline Structure

    Shusuke YOSHIMOTO  Takuro AMASHITA  Shunsuke OKUMURA  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:10
      Page(s):
    1675-1681

    This paper presents a new 8T (8-transistor) SRAM cell layout mitigating multiple-bit upset (MBU) in a divided wordline structure. Because bitlines along unselected columns are not activated, the divided wordline structure eliminates a half-select problem and achieves low-power operation, which is often preferred for low-power/low-voltage applications. However, the conventional 8T SRAM with the divided wordline structure engenders MBUs because all bits in the same word are physically adjoining. Consequently, it is difficult to apply an error correction coding (ECC) technique to it. In this paper, we propose a new 8T cell layout pattern that separates internal latches in SRAM cells using both an n-well and a p-substrate. We saw that a SEU cross section of nMOS is 3.5–4.5 times higher than that of pMOS (SEU: single event upset; a cross section signifies a sensitive area to soft error effects). By using a soft-error simulator, iRoC TFIT, we confirmed that the proposed 8T cell has better neutron-induced MBU tolerance. The simulator includes soft-error measurement data in a commercial 65-nm process. The MBU in the proposed 8T SRAM is improved by 90.70% and the MBU soft error rate (SER) is decreased to 3.46 FIT at 0.9 V when ECC is implemented (FIT: failure in time). Additionally, we conducted Synopsys 3-D TCAD simulation, which indicates that the linear energy transfer (LET) threshold in SEU is also improved by 66% in the proposed 8T SRAM by a common-mode effect.