1-3hit |
Yi CHEN Tatsuya OKADA Takashi NOGUCHI
An application of laser annealing process, which is used to form the P-type Base junction for high-performance low-voltage power MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), is proposed. An equivalent shallow-junction structure for P-Base junction with uniform impurity distribution is achieved by adopting green laser annealing of pulsed mode. Higher impurity activation for the shallow junction has been achieved by the laser annealing of melted phase than by conventional RTA (Rapid Thermal Annealing) of solid phase. The application of the laser annealing technology in the fabrication process of Low-Voltage U-MOSFET is also examined.
Excimer laser annealing at 308nm in UV and semiconductor blue laser-diode annealing at 445nm were performed and compared in term of the crystallization depending on electrical properties of Si films. As a result for the thin Si films of 50nm thickness, both lasers are very effective to enlarge the grain size and to activate electrically the dopant atoms in the CVD Si film. Smooth Si surface can be obtained using blue-laser annealing of scanned CW mode. By improving the film quality of amorphous Si deposited by sputtering for subsequent crystallization, both laser annealing techniques are effective for LTPS applications not only on conventional glass but also on flexible sheet. By conducting the latter advanced annealing technique, small grain size as well as large grains can be controlled. As blue laser is effective to crystallize even rather thicker Si films of 1µm, high performance thin-film photo-sensor or photo-voltaic applications are also expected.
Yi CHEN Tatsuya OKADA Takashi NOGUCHI
An application of laser annealing process, which is used to form the shallow P-type Base junction for 20-V planar power MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) is proposed. We demonstrated that the fabricated devices integrated with laser annealing process have superior electrical characteristics than those fabricated according to the standard process. Moreover, the threshold voltage variation of the devices applied by the new annealing process is effectively suppressed. This is due to that a uniform impurity distribution at the channel region is achieved by adopting laser annealing. Laser annealing technology can be applied as a reliable, effective, and advantageous process for the low-voltage power MOSFETs.