The search functionality is under construction.

Author Search Result

[Author] Tsutomu SUZUKI(6hit)

1-6hit
  • Resolution Enhancement of Pulse Radar by Inversion Method

    Xuefeng WU  Ikuo ARAI  Kiyoshi KUSAMA  Tsutomu SUZUKI  

     
    PAPER-Radar Signal Processing

      Vol:
    E76-B No:10
      Page(s):
    1279-1284

    The size and weight of marine pulse radar systems must be limited in order to mount them on board boats. However, the azimuthal resolution of a marine radar with a small antenna is degraded by the antenna beam width. It is desirable to use signal processing techniques to increase both the azimuthal resolution and the range resolution of such systems without changing their external configuration. This paper introduces a resolution enhancement method based on deconvolution, which is a kind of inversion. The frequency domain deconvolution method is described first. The effectiveness of the proposed method is shown by simulation. Then, an example of resolution enhancement processing is applied to a pulse radar. The results of practical experiments show that this method is a promising way of upgrading radars by simply processing the received signals.

  • Design and Simulation of 4Q-Multiplier Using Linear and Saturation Regions of MOSFET Complementally

    Tsutomu SUZUKI  Takao OURA  Teru YONEYAMA  Hideki ASAI  

     
    PAPER

      Vol:
    E85-A No:6
      Page(s):
    1242-1248

    A new four-quadrant (4Q) Multiplier complementally using linear and saturation regions of MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is proposed for the wide dynamic range and superior flexibility of the input range. This multiplier operates in the region except for the threshold voltage VT to zero. The validity of the proposed circuit is confirmed through HSPICE simulation.

  • FOREWORD

    Tsutomu SUZUKI  Matsuo SEKINE  Tetsuo TAMAMA  Ikuo ARAI  Motoyuki SATO  

     
    FOREWORD

      Vol:
    E76-B No:10
      Page(s):
    1229-1230
  • Advance on Underground Radars

    Tsutomu SUZUKI  Ikuo ARAI  

     
    INVITED PAPER

      Vol:
    E74-B No:2
      Page(s):
    289-294

    This paper describes the advanced underground radar techniques developed by authors using signal processing to noise and clutter rejection, to pulse compression, to antenna beam compression and to target's identification. Underground radars which were developed and are developing in Japan are also introduced.

  • Recent Progress in Borehole Radars and Ground Penetrating Radars in Japan

    Motoyuki SATO  Tsutomu SUZUKI  

     
    INVITED PAPER

      Vol:
    E76-B No:10
      Page(s):
    1236-1242

    This paper describes fundamental system of borehole radars and its recent progress in Japan. Early development of borehole radars were carried out for detection of cracks in crystallized rock, however, the fields of applications are expanding to other various objects such as soil and sedimental rocks. Conventionally developed radar systems are not necessarily suitable for these applications and they must be modified. New technologies such as radar polarimetry and radar tomography were also introduced.

  • A Microwave Doppler Radar System for Noncontact Measurement of Head and Finger Movements in Clinical Use

    Ikuo ARAI  Kazuma MOTOMURA  Tsutomu SUZUKI  

     
    PAPER-Radar Applications to Industrial World

      Vol:
    E76-B No:10
      Page(s):
    1318-1324

    A method to measure the displacement from the phase rotation of the Doppler signal including the displacement information of the moving body is proposed, where the displacement resolution can be improved 4 times by making the phase rotation faster. Furthermore, this test system is applied in clinical use. The test system is built up by using a two-phase microwave Doppler sensor covering a 10GHz band, where the Doppler frequency is multiplied 4 times by signal processing. Thus, the resolution is improved from a conventional 12.6mm (in case of 11.9GHz) to 3.15mm, and practical utilization has been attained. The microwave Doppler radar system described in this paper is adequate for the displacement measurement for a relatively fast moving body. As a medical sensor for clinical use, measurement examples of head movement in a vestibule examination (vestibule oculomotor reflexive inspection) and finger movement in a cerebellum function test are given. Furthermore by using two sets of this Doppler radar system, a 2-dimensional measurement of head movement is possible.